
0-7803-9508-5/05/$20.00 ©2005 IEEE

Contextual Reusability Metrics for Event-Based Architectures

Sutirtha Bhattacharya
PTD Automation
Intel Corporation

Hillsboro, OR – 97124
sutirtha.bhattacharya@intel.com

Dewayne E. Perry
Empirical Software Engineering Lab (ESEL)

ECE, The University of Texas at Austin
Austin, TX 78712

perry@ece.utexas.edu

Abstract
Component Based Software Engineering has been

perceived to have immense reuse potential. This area has
evoked wide interest and has led to considerable
investment in research and development effort. Most of
these investigations have explored internal
characteristics of software components such as
correctness, reliability, maintainability, modularity,
understandability, readability, interoperability,
portability, generality and genericity for promoting
reuse. But experience over the past decade has
demonstrated that the usefulness of a component depends
as much on the context into which it fits as it does on the
internal characteristics of the component. This context
takes into account the requirements of the domain and an
architectural description is a useful way of representing
that domain. In this paper, we present a set of reusability
metrics designed to measure how well a software
component fits into such an architectural context.

1. Introduction

Almost a decade and a half of architectural research,
beginning with the Perry and Wolf paper [1], has resulted
in significant progress in the area of Software
Architecture, but it is evident that software engineering is
still far from the maturity of other traditional engineering
disciplines. Software Architecture was envisioned to be
the agent that would catalyze the transformation of
software engineering into a well understood discipline by
driving standardization, developing architecture templates
for well-understood domains and enabling systematic
reuse of architectural components. That clearly has not
happened. However, progress in the areas of Model
Driven Architectures, Product Line Architectures,
Architecture Description Languages and Architectural
Styles form a strong basis and motivation for reuse.

Software Reuse research has seen significant activity
over the years. To quantify the benefits of reuse and for
supporting objective decision making, reuse metrics have
long been a subject of interest. It has been widely felt
that, in some sense, researchers have fully explored most

of the traditional methods of measuring reusability:
complexity, module size, interface characteristics, etc.
Though the research community does currently recognize
the importance of the problem domain with regard to
reuse, few have actually linked the context in which a
component is used to the true “usefulness” of that
component. We believe reuse research will benefit
greatly by focusing on the framework in which a software
component fits. So, if the reusability of a component
depends on context, then reusability metrics need to
include characteristics about the domain, the software
architecture, and the associated environment.

This paper discusses the use of software architecture
descriptions as the 'context' of a software component. Our
contextual metrics enable quantitative evaluation of the
reusability of a software component based on its
compliance to different elements of an architecture
description. Reuse evaluations are also promoted by
using these metrics to quantitatively evaluate the
similarity between different components, measure a
component’s coverage of functionality encoded in the
architectural description and numerically track the
evolution of a component in terms of system data and
functionality.

Section 2 of this paper gives a brief outline of related
work done in the area of reusability measurement.
Section 3 discusses the assumptions about the
architectural 'context'. The proposed metrics are
elaborated in Section 4. Section 5 briefly explains the use
of these metrics and Section 6 concludes the paper.

2. Reuse metric approaches

State of the art approaches for measuring reusability
fall into two basic categories: empirical and qualitative.
Empirical methods depend on objective data and can
normally be calculated automatically and inexpensively
[2] while the qualitative methods generally rely on
subjective assessment of the software’s adherence to
some guidelines or standards [2]. We draw from Jeff
Poulin’s book [3] to navigate these spaces of reusability
measurement.

mailto:sutirtha.bhattacharya@intel.com

Empirical Methods: One of the most prominent
approaches in this area is that by Prieto-Diaz and
Freeman. They identified several program attributes -
program size, program structure, program documentation,
and reuse experience and proposed a faceted
classification scheme for evaluating reusability based on
these attributes [4]. Selby, on the other hand, proposed a
module oriented, statistical study of reusability
characteristics of software [5]. The ESPIRIT-2 project
called REBOOT (Reuse Based on Object Oriented
Techniques) developed a taxonomy of reusability
attributes with four reusability factors [6]. Caldiera and
Basili [7] proposed a module oriented empirical approach
in which they stated that basic reusability attributes
depend on component costs, quality, and usefulness.
Using ideas drawn from plagiarism detection, Hislop
proposed a module-oriented approach for evaluating
components in terms of function, form and similarity [8].
Boetticher and Eichmann [9] explored the viability of
using neural networks to generate reusability rankings of
software. Torres and Samadzadeh established a
relationship between information theory metrics and
reusability metrics and concluded that reuse information
metrics might help in selecting the optimum case among
different reuse candidates [10].

Qualitative Methods: Since defining an objective
reusability metric often proves difficult, many
organizations provide subjective (non-empirical)
guidance on identifying and building reusable software
components. Some of the prominent approaches in this
area include Edwards [11], Hooper and Chester [12],
Hollingsworth [13] and NATO [14]. These guidelines
generally involve an intuitive description of what a
reusable component ought to look like and range in
content from general discussions about designing for
reuse to rigorous design points [13, 15]. Usually module
oriented, the guidelines often elaborate on formatting and
style requirements and identifies general “reusability”
attributes. Notable among the studies on “reusability”
attributes is the work of Khairuddin and Key, who have
examined these attributes to construct a reusability model
[16]. Another notable approach, the “3C Model,” [17]
attempts to isolate the three design point specific
dependencies of concept, content and context from each
other during the implementation and design of a module.

Summary: With the exception of the 3C Model, none of
the approaches mentioned above include any software
architecture or domain characteristics. They typically
explore a component’s internal characteristics, which do
not take into account the context (the requirements and
architectural structure) in which the component operates.

The set of metrics presented here quantitatively
evaluates a software component with respect to (1)
compliance/adherence to those functional and data
requirements captured in the architectural description, (2)
compliance/adherence to the architecture structure, (3)
the architecture compliance and coverage of the domain
architectural descriptions and (4) the evolution of
compliance and coverage over different component
versions. These quantitative, contextual evaluations
position this research as fundamentally different from
previous work done in this area.

3. Context assumptions

The context of a software component is encoded in

some form of system description. In 1980, Perry and
Habermann [18] proposed a system description language
and identified the rules for well-formed system
compositions in terms of required and provided elements
in configuration compositions. These compositions
defined the context for evaluating the substitutability (or
reuse) of one component for another. Since then we have
seen the advent of architecture description languages
(ADLs) to define basic system structures and establish
constraints on those structures, their individual
components and component interactions.

In this research we use architecture descriptions to
define the context for use and reuse. Further, we make
the following basic assumptions about these context
descriptions in terms of their descriptive elements and
format. The description of each component in a
architecture description consists of at least the following
• Interface descriptions of the services that include

associated input and output descriptions of the data
and events, and the pre & post conditions;

• Attributes descriptions; and
• Behavioral descriptions.

Interface descriptions of services are universally
standard in almost all architecture description languages.
Pre and post conditions have been used in several formal
approaches to architectural description e.g. Inscape [19].
Event based behavioral descriptions have gained in
popularity with Luckham’s Rapide [20].

With the above basis for the context, this research
can be extended to model driven architectures, product
line architectures, reference architectures and different
expressions of architectural styles with less complete
descriptions.

 On the assumption that we have an asset base from
which we choose components to use in the architecture
description to instantiate that architecture, we propose the
model in Figure 1 for asset component specification to
capture the necessary information to be used in the

contextual metrics. We note that it consists of the same
information we assume to be present in the architecture
description

Architectural

Functionality Spec

Architectural
Component Spec

Interface
Spec

Service Data
Spec

Service
Event Spec

Pre-Conditions
Spec

Post-Conditions
Spec

Input Data
Spec

Output Data
Spec

Input Event
Spec

Output
Event Spec

Behavioral
Spec

Provided
Service Spec

Required
Service Spec

Attribute
Spec

Behavioral Unit Spec
<State, Trigger, Guard,

Effects, Target>

Figure 1: Asset Component Specification

Creating the asset base then requires a specification

activity, referred to here as Registration, to establish the
necessary information (or mappings) needed to measure
the usability of a component in a particular context.
The following steps detail the Registration process:
Step 1: Select an architectural component from the
architectural specification
Step 2a: For the services provided by the architectural
component, capture the services supported by the
component being registered in the Provided Service
Specification.
For each service:
• Capture the Input and Output Data & Events

supported by the component for the service in the
Data and Event Specification

• Capture the Pre and Post Conditions supported by the
component for the provided service in the Pre and
Post Condition Specifications

Step 2b: Capture the services required by the component
in the Required Services Specification by following the
steps similar to Step 2a
Step 3: For the Attributes in the architectural component,
capture the attributes supported by the component in the
Attribute Specification
Step 4: For the Behavioral Units of the architectural
component, capture the behavioral units supported by
component in the Behavioral Unit Specification in the
form of quintuples (State, Trigger, Guard, Effects and
Target). A component may be registered to a subset of the
quintuples for each state transition.
Step 5: Repeat Steps 1-4 for all architectural components
in the architectural specification.

4. Proposed metrics

In order for a software component to be reusable, its

engineering characteristics need to be compatible with the
envisioned target system in terms of its functional
requirements. Though it may be possible to institute some
well-defined approaches to engineer components that
ensure reusability, there is still considerable amount of
debate on this issue [21]. The set of metrics presented in
this research, support a quantitative and objective
evaluation of software components with respect to the
context of the architecture description --- (i) the domain
(functional and data) requirements contained in the
architecture description and (ii) the architectural
components.

The metrics are categorized into Architecture
Compliance Metrics and Component Characteristic
Metrics.

4.1 Architecture compliance metrics

The Architecture Compliance Metrics measure the
compliance of a software component to the constituent
elements of the architecture description at different levels
of granularity. The key metric is the Architectural
Component Compliance Coefficient which measures the
compliance of an asset component to a particular
component in the architecture description, taking into
account the (i) interfaces supported and required (ii) the
data owned and (iii) behavior. For computing this metric,
three other metrics are relevant – the Architectural
Component Service Compliance Coefficient, the
Architectural Component Attribute Compliance
Coefficient and the Architectural Component Behavior
Compliance Coefficient. This intuitively is analogous to
our representation, thus providing objective measures for
the three key aspects of any software component – the
interfaces, the data, and the behavior. These compliance
coefficients can be used to compare different software
components for identifying a “best-fit” candidate when
designing a system and attempting to reuse previously
developed components. The metrics are discussed below.

4.1.1 Architectural Component Service Compliance
Coefficient. The Architectural Component Service
Compliance Coefficient, ArchSvCoeff(d), is a measure of
an asset component’s compliance to all the provided as
well as the required services of a particular architectural
component. It is computed as the average of the asset
component’s compliance to each of the required
architectural services

Service level compliance indicates the extent to
which an asset component is compliant with a given

functional requirement (service) defined in the
architecture description. Six coefficients - the Input Data
Compliance Coefficient, the Output Data Compliance
Coefficient, the Input Event Compliance Coefficient, the
Output Event Compliance Coefficient, the Pre-Conditions
Compliance Coefficient and the Post-Conditions
Compliance Coefficient are used to calculate service level
compliance. Therefore for each service, s, in an
architectural component, the following coefficients are
defined:

Input and Output Data Compliance Coefficient: The
Input/Output Data Compliance Coefficients, IDCoeff(s)/
ODCoeff(s), are measures of how well an asset
component registered to a given service s, in the
architectural component, complies with the input /output
data requirements for that service. These coefficients are
essentially the average of the ratios between the number
of data elements to which the component is registered to
the total number of data elements associated with a
particular data entity, for all the input/output data entities.
A data entity can be thought of as a data concept like
‘Address’, while data elements are the sub-elements of
that data concept like Street Address, City, State, Zip for
our example. Thus

∑
∈

=
IDEn(s)en

regd

|en)IDEl(s,|
|en)(s,IDEl|

|IDEn(s)|
1IDCoeff(s) (1)

∑
∈

=
ODEn(s)en

regd

|en)ODEl(s,|
|en)(s,ODEl|

|ODEn(s)|
1ODCoeff(s) (2)

Where
IDEn(s)/ ODEn(s): Set of Input/Output Data Entities for
service s.
IDElregd(s, en)/ ODElregd(s, en): Set of Input/Output Data
Elements for the entity en of service s, to which the
component is registered.
IDEl(s, en)/ODEl(s, en): Set of Input/Output Data
Elements for the entity en of service s.
en: An entity belonging to the set IDEn(s)/ODEn(s)

Note that the above coefficients take into account the
existence (or non-existence) of entities as well as the
elements associated with these entities. A missing entity
would affect the numerical values of these coefficients
much more than a missing element.

Input and Output Event Compliance Coefficient: The
Input/Output Event Compliance Coefficient,
IECoeff(s)/OECoeff(s), measures an asset component’s
compliance to the input/output event requirements of a
component service, s, in the architectural description.
IECoeff(s)/ OECoeff(s), are the ratios between the total
number of input/output events to which a component is
registered to the total number of input/output events for
service s.

|IE(s)|
|(s)IE|IECoeff(s) regd

= (3)

|OE(s)|
|(s)OE|OECoeff(s) regd= (4)

Where
()regdIE s / ()regdOE s : Set of Input/Output Events for

service s, to which component is registered.
()IE s / ()OE s : Set of Input/Output Events for service s.

Pre and Post Condition Compliance Coefficient: The
Pre/Post Condition Compliance Coefficient,
PreCondCoeff(s)/PostCondCoeff(s), measures an asset
component’s compliance to the pre and post condition
requirements of a component service, s, in the
architectural description. PreCondCoeff(s)/
PostCondCoeff(s) are the ratio between the total number
of pre/post conditions to which a component is registered
to the total number of pre/post conditions for service s.

|PreCond(s)|
|(s)PreCond|ff(s)PreCondCoe regd= (5)

|)PostCond(s|
|(s)PostCond|eff(s)PostCondCo regd= (6)

Where
PreCondregd(s)/PostCondregd(s):Set of Pre/Post Conditions
for service s, to which component is registered.
PreCond(s)/PostCond(s): Set of Pre/Post Conditions for
service s.

Using the above six coefficients, for a service s, we
obtain a value for the compliance of an asset component
to the service, s.

Service Compliance Coefficient:The Service Compliance
Coefficient, SvCoeff(s) measures an asset component’s
overall compliance to the architecture component’s
service, taking into account its compliance to input and
output data (IDCoeff & ODCoeff), input and output
events (IECoeff & OECoeff) and pre and post conditions
(PreCondCoeff and PostCondCoeff). The Service
Compliance Coefficient also takes into account the
relative importance of the particular service in the
architecture by considering the number of other services
that directly affects or is affected by the service under
consideration. SvCoeff(s) is essentially the weighted
average of the Input and Output Data Compliance
Coefficient, the Input and Output Event Compliance
coefficient and the Pre and Post Condition Compliance
Coefficient.

p(s)PostCondDe(s)PreCondDep
OEDep(s)IEDep(s)ODDep(s)IDDep(s)

eff(s)]PostCondCop(s)PostCondDe
ff(s)PreCondCoe(s)PreCondDep

OECoeff(s)OEDep(s)IECoeff(s)IEDep(s)
ODCoeff(s)ODDep(s)IDCoeff(s)[IDDep(s)

SvCoeff(s)

++
+++

×+
×+

×+×+
×+×

=

 (7)
Where
IDDep(s)/ ODDep(s): Total number of services
generating /consuming the input/output data entities
required by service s.
IEDep(s)/OEDep(s): Total number of services that
generate/depend on trigger events of /from the service s.
PreCondDep(s)/PostCondDep(s): Total number of
services responsible for the set of pre/post conditions

The calculation of the service compliance metrics
takes into account not only the associated data, events
and pre/post conditions, it also factors in the input and
output dependencies, thereby intuitively covering all the
interface characteristics that are relevant to the given
service.

The Service Compliance Coefficient is calculated for
each service that is provided or required by the
component being registered. Finally, we compute the
Architectural Component Service Compliance Coefficient
i.e. the service compliance for all services in the
architectural component.

Architectural Component Service Compliance
Coefficient: The Architectural Component Service
Compliance Coefficient, ArchSvCoeff(d), is a measure of
an asset component’s compliance to the services (both
provided and required) of a particular architectural
component. It is the average of the Service Compliance
Coefficient of all the services associated with a particular
architectural component.

|ArchSv(d)|

SvCoeff(s)
f(d)ArchSvCoef DRACSv(d)s

∑
∈= (8)

Where,
ArchSv(d): Set of services (provided and required) for
architectural component d.

Of course we can calculate separate coefficients for
provided and required service by setting ArchSv(d) to the
set of provided services or required services only.

4.1.2 Architectural Component Attribute Compliance
Coefficient. The Architectural Component Attribute
Compliance Coefficient, ArchAttrCoeff(d), is a measure
of an asset component’s compliance to all the data
attributes of a particular architecture component. It is
essentially the average of the components compliance to
each of the attributes that it is registered to.

ArchAttrCoeff(d) is measured in terms of the Data
Attribute Compliance Coefficient or AttrCoeff(a).
AttrCoeff(a) measures the extent to which an asset
component is compliant with component data as specified
in the architecture description. For each Data Attribute a
in a architecture component, AttrCoeff(a) is calculated as:

|Attr(a)|
|(a)Attr|a)AttrCoeff(regd

= (9)

Where
()regdAttr a : Set of elements in attribute a to which the

component is registered.
()Attr a : Set of all the elements of Attribute a.
Finally we calculate, the ArchAttrCoeff(d) which is

the average of the Data Attribute Compliance Coefficient
of all the attributes associated with a particular
architectural component.

|)ArchAttr(d|

a)AttrCoeff(
eff(d)ArchAttrCo)ArchAttr(da

∑
∈= (10)

Where
ArchAttr(d): Set of Attributes in arch. component d

4.1.3 Architectural Component Behaviour
Compliance Coefficient. The Architectural Component
Behavior Compliance Coefficient measures the degree of
compliance of an asset component to the behavior of an
architectural component captured in the architecture
descriptions. It is measured in terms of the Behavioral
Unit Coefficient BehavUnitCoeff(bu), where
BehavUnitCoeff(bu) is computed as below

|l(bu)BehavUnitE|
|(bu)lBehavUnitE|oeff(bu)BehavUnitC regd= (11)

Where
BehavUnitElregd(bu): Set of behavioral unit elements the
component is registered to.
BehavUnitEl(bu): Set of elements in a particular
behavioral unit, where an element is one of the quintuples
– State, Trigger, Guard, Effects and Target.

With the above, we calculate the Architecture
Component Behavior Compliance Coefficient

|nit(d)ArchBehavU|

oeff(bu)BehavUnitC
oeff(d)ArchBehavC nit(d)ArchBehavUbu

∑
∈= (12)

ArchBehavUnit(d): Set of Behavioral Units of
architectural component d.

4.1.4 Architectural Component Compliance
Coefficient. Now using the Service Compliance Metric
evaluated for each service, the Data Attribute Compliance
Coefficient is evaluated for each attribute and the
Behavioral Compliance Coefficient, the notion of a
component’s overall compliance to a architectural

component can be calculated. The Architectural
Component Compliance Coefficient, ArchCoeff(d),
measures the asset component’s overall compliance to an
architectural component.

|nit(d)ArchBehavU|
|)ArchAttr(d||AcchSv(d)|

|oeff(d)ArchBehavC
|nit(d)ArchBehavU|

eff(d)ArchAttrCo|)ArchAttr(d|
f(d)ArchSvCoef|ArchSv(d)|

d)ArchCoeff(
++

×
+×

+×

=
 (13)

As mentioned previously, these coefficients measure
an asset component’s compliance to various elements of
the architectural description. Therefore, if component A
has a SvCoeff of 0.5 for a certain service in the
architectural description and component B has a SvCoeff
of 0.75 for the same service, it can be inferred that asset
component B is more compliant to the architecture
component and should be preferred over asset component
A for that particular service implementation. On the same
lines, if the goal is to implement a particular architectural
component as a whole complying with the specified
boundaries of functionality and data set forth by that
component, then a component with a higher ArchCoeff
(d) should be preferred.

4.2 Component Characteristic Metrics

While the Architecture Compliance Metrics
calculated the compliance of an asset component to the
various elements of the architecture description
individually, these metrics did not capture the
characteristics of a particular component as a whole. The
Component Characteristic metrics address this aspect.
These metrics evaluate characteristics of an asset
component with respect to component functionality,
component data and the component as a whole. The
Component Characteristic metrics measure the
compliance of an asset component with respect to the
component data (characterized by all the attributes in the
architectural description) and component functionality
(characterized by all the services in the architectural
description).

The Component Characteristic Metrics are of two
types (i) The Proximity Metrics and (ii) The Compliance
Metrics. These metrics are discussed in the following
sub-sections and they leverage the Architecture
Compliance metrics derived in the previous section.

4.2.1 Proximity Metrics. The Proximity metrics are
defined to measure “closeness” of two versions of an
asset component with respect to a) component
functionality i.e. Interfaces/Services b) component data
i.e. Attributes. In essence, these coefficients indicate the

proximity of two asset versions with respect to the
architectural description. The utility of these metrics lies
in the fact that they give an insight into how a component
has evolved in terms of domain data and domain
functional requirements.

Though the proximity metrics have been defined to
measure “closeness” between two versions of the same
asset component, the idea can be extended to measure
proximity between two different components as well.

Functional Proximity Metrics: The Functional Proximity
Metrics leverage the Functional Model (the collection of
services contained in the architectural description) to
measure the similarity between two components with
regard to the functional requirements the components
satisfy.

Let FC be the Functional Model Compliance Matrix
representing the compliance of different versions of a
component, tc, to the services of the architectural
description. Thus the matrix FC for two versions of
component tc can be represented as

FC=
1 1 1

2 2 2

1 2

v 1 v 2 v1

v 1 v 2 v2

SvCoeff () SvCoeff () ... SvCoeff ()

SvCoeff () SvCoeff () ... SvCoeff ()

n

n

n

s s s

s s sv

s s sv

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (14)

Where
v1 and v2 represents the two versions of the component,
tc.
s1 …sn represents the list of services from a particular
architecture description.
SvCoeffv1(sn), SvCoeffv2(sn) represents the Service
Compliance Coefficient of version v1 and v2 of the
Component with the set of Services, sn, in the
architectural description.

Now, the Proximity Matrix with respect to the
domain functionality, PMF, is defined as
PMF = [FC][FC]T
Where [FC]T denotes the transpose of the matrix FC.

The element PMFi,j represents the proximity of
versions i and version j with respect to the Functional
Model. The matrix PMF is not normalized. We use the
Euclidean Vector Norm to normalize the matrix PMF.
The normalized PMF restricts the value of the element
PMFi,j between zero and one. The formalized notation
for deriving a normalized PMF using the Euclidean
Vector norm is given below.

The Functional Model Compliance Matrix for the
software component, tc, can be written as:
FC = [svt] v = 1 ….V, t = 1…T
Where svt represents the Service Compliance
Coefficient for version, v, of the component, tc, for
service, s, in the architectural description. V represents
the total number of versions of tc and T represents the
total number of services in the architectural description.

The Service Compliance vector, sv, is represented as
sv = [sv,1 sv,2 sv,3 ……….sv,T].
We know from the Euclidean Vector Norm that

 || sv || 2 =
1/ 2

2

1

F

vt
t

s
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

Using the Functional Model Compliance matrix, FC,
it is now possible to define the proximity of two versions,
say (u, v) of a component. The FC can be evaluated as the
cosine of the angle formed by vectors sv and su that can

be computed as the dot product of
2|| ||

v

v

s
s

 and
2|| ||

u

u

s
s

,

respectively. Thus the Normalized Proximity Matrix,
PMFN, can be represented as
PMFN = [fuv] u = 1 ….V, v = 1…V (15)

where fuv =
1 v 2 u 2|| s || || s ||

F
vt ut

t

s s

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

After normalization, we are assured that uv0 f 1≤ ≤ .
At the boundaries, the following interpretations can be
made:
fuv = 1: The versions u and v are exactly similar in terms
of the Functional Model.
fuv = 0: There is no similarity in the functional model
coverage of the two versions of the component. In other
words they satisfy non-overlapping sets of services in the
architectural description.

The higher the value of fuv the more similar the two
versions of the component are and lower the value, the
more dissimilar the two versions are with respect to
functional requirements.

Data Proximity Metrics: The Data Proximity Metrics
leverage the Data Model (the collection of data attributes
contained within the architectural description) to measure
the similarity between two components with regard to the
data requirements the components satisfy. The treatment
used for deriving the proximity metrics with respect to
the Data Model is similar to the one used for deriving the
proximity metrics with respect to the Functional Model.
The only difference lies in the fact that the Data Model
Compliance matrix, DC, is represented by

DC =
1 1 1

2 2 2

1 2

v 1 v 2 v1

v 1 v 2 v2

AttrCoeff () AttrCoeff () ... AttrCoeff ()

AttrCoeff () AttrCoeff () ... AttrCoeff ()

n

n

n

a a a

a a av

a a av

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (16)

Where
 v1 and v2 represent the versions of the Component, tc.
a1 …an represents the list of attributes for a particular
architectural description.

AttrCoeffv1(an) represents the Attribute Compliance
Coefficient of version v1 of the component with the
attribute an in the architectural description.

Rest of the derivation is exactly the same as the
proximity metrics for the Functional Model.

4.2.2 Component Compliance Metrics. These metrics
measure the compliance of an asset component to the
architectural description as a whole. The Compliance
Metrics are of two types – the Static Compliance metrics
and the Compliance Evolution metrics. The Static
Compliance metrics measure the degree of compliance of
a component to the System Data Model and the System
Functional Model. The Compliance Evolution metrics
measure the percentage change of a component from one
version to another in terms of system data and
functionality.

Static Compliance Metrics: The Static Compliance
metrics are termed ‘static’ as they measure the
compliance of a given version of a component with
respect to the Data and Functional Model.

The Data Model Compliance Index, DCmI(v), for a
version of a component measures the compliance to the
complete Data Model of the System. It is calculated as

DCmI(v) =
|RegAttr(v)|

oeff(a)C(a).AttrC
RegAttr(v)a
∑

∈ (17)

while the Functional Model Compliance Index

 FCmI(v) =
|RegSvc(v)|

ff(s)C(s).SvCoe
RegSvc(v)s
∑

∈ (18)

Where
RegAttr(v)/ RegSvc(v): Set of Attributes/Services in the
architectural description to which the version v of the
component is registered.
C(a)/ C(s): Criticality of the Attribute/Service a/s .
AttrCoeffv(a) SvCoeffv(s): Attribute/Service Compliance
Coefficient for Attribute/Service a/s for version v of the
component.

The Criticality of the attribute/service is taken into
account to reflect their relative importance in the System.
If information regarding the criticality of data or services
does not exist or is not specified, C(s) and C(a) should be
set to one for all attributes and services.

The System Model Compliance Index, which is the
measure of a component’s overall compliance to the
domain requirements as represented in the architectural
description. It is calculated as

SysCmI(v) =
2

FCmI(v)DCmI(v) + (19)

In a situation where a system integrator has two
components to evaluate for satisfying a given
functionality, the component with the higher value of
SysCmI (v) should be selected if overall domain
compliance is desired.

Compliance Evolution Metrics: The Compliance
Evolution metrics for a component are intended to
measure the percentage change in the component’s
compliance to the domain from one version to another.

The Data Model Compliance Evolution Index,
DCmE (vnew, vbase), for a component, captures the
percentage change in the compliance to the Data Model
from one version to another and is calculated as

DCmE(vnew, vbase) = x100
)DCmI(v

)DCmI(v)DCmI(v
base

basenew − (20)

Similarly, the Functional Model Compliance Evolution
Index

FCmE(vnew, vbase)= x100
)FCmI(v

)FCmI(v)FCmI(v
base

basenew − (21)

The rollup of data and functional evolution, the
System Model Compliance Evolution Index,
SysCmE(vnew, vbase), for a component, captures the
percentage change in the component’s compliance to the
overall domain requirements from one version to another
and is calculated as in below.
SysCmE (vnew, vbase) =

x100
)SysCmI(v

)SysCmI(v)SysCmI(v
base

basenew − (22)

In a typical software system, we are likely to see high
positive values for compliance evolution indices, which
would indicate that the new version of the component is
more compliant to the domain. A negative value would
indicate that the new component has lower compliance to
the domain, which in most general cases is not desirable.

5. Application of the Metrics

Reusable components should ideally have high

values for the Compliance and Coverage metrics. Target
threshold values, which may come from Program
Managers or System Integrators, could be used as design
drivers when a reusable component is being built from
scratch. The goal in such a case should be to aim for

(i) high compliance to architecture functionality,
(ii) high compliance to architecture data, and
(iii) high compliance to architecture component

description.
For asset components, the Architecture Compliance

metrics provide a useful mechanism for evaluating reuse
potential of these components and help in decision-
making about suitability of reuse candidates.

These metrics were applied in a sample University
Registration System where the architectural description
consisted of 45 services and 22 data entities distributed
over 15 architectural components. The returned results
corroborated intuitive understanding. Detailed elaboration
of the experiment cannot be provided in this paper due to
constraints of space. We present sample results to
demonstrate the core concepts.

Service Compliance Coefficient for two reusable
components TEXv1.0 and ROSEv1.0 were calculated for
a service “Add a Class”. Using formula (7), the Service
Compliance Coefficient (SvCoeff) of TEX v1.0 was
calculated as 0.84 while that of ROSE v1.0 was found to
be 0.63 (Table 1).

Table 1: Calculation of Service Compliance

Thus for the “Add a Class” service TEX v1.0 was

selected over ROSE v1.0 as it satisfied the functional
requirement better. The reason for this better compliance
was obvious when we explored the internal design of the
two software components. For the “Add a class” service,
TEX 1.0 supported more of the input data attributes in the
architecture compared to ROSE 1.0. Further in TEX 1.0,
the implementation of the service was such that it
generated more of the output data attributes compared to
ROSE resulting in a higher overall compliance to the
output data of the architectural specification. Also for
TEX 1.0 the service “Add a class” was triggered by the
exact same set of events, as defined in the architecture,
while the same was not true for ROSE 1.0. These distinct
differences in the design of the two components were
clearly brought out by our metrics.

By considering the Service Compliance Coefficient
of similar components, component developers would also
be able to identify whether their component is

System Architecture: Student Registration
Arch. Component Name: Registration System
Service Name: Add a Class
 TEX

1.0
ROSE

1.0
Input Data Compliance Coefficient:
IDCoeff(s)

0.94 0.89

Input Data Dependency: IDDep(s) 1 1
Output Data Compliance
Coefficient: ODCoeff(s)

0.75 0.45

Output Data Dependency: ODDep(s) 1 1
Input Event Compliance Coefficient:
IECoeff(s)

1 0.5

Input Event Dependency: IEDep(s) 1 1
Output Event Compliance
Coefficient: IECoeff(s)

0.67 0.67

Output Event Dependency: IEDep(s) 1 1
Service Compliance Metric:
SvCoeff(s)

0.84 0.63

competitive enough (i.e. competitive against other
components for the domain) for a particular service
implementation and therefore take necessary steps to
increase the reuse potential of their components.

The calculation of the Architectural Component
Compliance Coefficient (Table 2) revealed a typical
scenario often encountered during architectural
assessment – conflicts of reusability benefits.

Table 2: Calculation of Arch. Component Compliance

System Architecture: Student Registration
Arch. Component Name: Registration System
Services in Arch Component = |ArchSv(d)| = 4
Attributes in Arch Component = |ArchAttr(d)| = 1

 TEX 1.0 ROSE 1.0
Arch. Service Compliance
Coefficient: ArchSvCoeff(d)

0.74 0.77

Arch Attribute Compliance
Coefficient: ArchAttrCoeff(d)

0.75 0.75

Arch Component Compliance
Coefficient: ArchCoeff(d)

0.742 0.766

Taking into account all the services and attributes in

the architectural component “Registration System”, we
calculate the overall Architectural Compliance
Coefficient using formula (13). We observe that the value
of ArchCoeff(d) for TEX v1.0 (0.742) is actually lower
than that of ROSE v1.0 (0.766), though the difference
itself is not significant. The System Integrator at this
point may opt for TEX v1.0 if satisfying the “Add a
Class” service per the architectural spec is more
desirable. However if overall compliance is desired
ROSE v1.0 would be a better candidate. For cases where
the difference in the coefficient values is very small or
insignificant, the more granular coefficients for the key
services, attributes or behavioral units should be
considered for identifying appropriate reuse candidates.
This example revealed another important aspect of the
proposed metrics. They can provide useful quantitative
measures even in the absence of complete information
thus enabling a mechanism for early architectural
assessment. In our specific example behavioral
information was not available for the “Student
Registration” class and yet we could compute the
architectural compliance coefficients. Of course the same
analysis should be repeated as more information becomes
available during architectural design for validation of
decisions made early in the development life cycle.

We also computed the Functional Proximity Metric
and the Data Proximity Metric for two consecutive
versions of TEX. The functional proximity metric worked
out to 0.9911 while the data proximity metric worked out
to 0.98. Recall that the higher the value of the proximity
metric, more the similarity between the asset components.
The metric values corroborated the fact that there was no

major functional difference between the two versions of
TEX and the second version mostly addressed bugs from
the first version. A low value of the proximity metrics
would imply major differences in functionality between
two versions and flag the need for more regression testing
prior to upgrade.

It should be noted that the manual process of
Registration (explained is Section 3) of asset components
to the architecture description is fundamental to the
application of these metrics. It is the Registration process
that helps eliminate potential semantic differences
between the terminology in the architecture description
and the asset components. In our “Add a Class” example,
if the same functionality is delivered using a different
service (say “Register for a Class”) for a given asset
component, it is the responsibility of the person
registering the component to ensure that the mappings are
correctly established. To be registered to an element of
the architectural description essentially implies that the
asset component supports the corresponding interface,
data or behavior specified in the architecture.

For a critical assessment of the metrics, it is fair to
ask “Why these?” or “Why not other variations?” While
we distinguish our research in general from other
practitioners in Section 2, we do acknowledge that it is
possible to define alternate variations of these metrics
grounded in the same concept of architectural context.
However, we believe that our set of metrics is a
‘sufficient’ (though not necessarily ‘complete’) set for the
kind of reasoning needed during architectural assessment
for identifying reuse candidates. This has been borne out
by our experience with the Registration System. The final
test would of course be the application of these metrics
for complex industrial systems.

6. Conclusion

The contextual metrics presented here provide a
mechanism for a quantitative evaluation of software
component reuse in the context of architecture
requirements (functional and data) and architecture
structure. We leverage the requirements represented
within an architectural description to provide the context
for an asset component to evaluate the compliance of
these components to the architectural description, and to
assess the similarity between components, the
component’s coverage of the architectural description, as
well as numerically tracking the evolution of a
component in terms of the architectural description. Our
reusability assessment goes beyond simple interface
matching and helps system integrators explore behavioral
characteristics of components as well. These metrics
provide a quantitative mechanism for assessing
reusability leveraging the context of a component, thus

distinguishing our research from previous attempts at
reusability measurement. We extend the qualitative
context-based assessment of the 3C Model and provide
objective measures using the context of the overall
architecture.

These metrics are ‘generic metrics’ as the
measurement indices are not constrained by the nature of
the components being evaluated and can be applied to
any component. Defining “generic metrics” has been one
of the recognized goals of the reuse research community.
These metrics provide simple yet realistic, quantitative
measure of reuse potential and help evaluate the benefits
of selecting one component over another at design time.
They are intuitive in nature, are consistent, reproducible,
and can be used to provide meaningful insight for various
system stakeholders.

7. Acknowledgements

This research was funded in part by NSF CISE
Science of Design Grant IIS-0438967.

8. References

[1] Perry, D. E., Wolf, A. L., “Foundations for the Study of

Software Architectures”, ACM Software Engineering
Notes, 17, 4, October 1992, 40-52

[2] Tracz, W., “Software Reuse Maxims,” ACM SIGSOFT
Software Engineering Notes, Vol. 13, No. 4, October 1998,
pp. 28-31

[3] Poulin, J. S., “Measuring Software Reuse – Principles,
Practices and Economic Models”, Addison-Wesley, 1996

[4] Prieto-Diaz, R., Freeman, P., “Classifying Software for
Reusability,” IEEE Software, Vol. 4, No. 1, January 1987,
pp. 6-16.

[5] Selby, R. W., “Quantitative Studies of Software Reuse,” in
Software Reusability, Volume 2, Ted J. Biggerstaff and
Alan J. Perlis, eds. Addison-Wesley, Reading, MA, 1989.

[6] Karlson, E., Guttorm. S., and Stalhane, T., “Techniques for
Making More Reusble Components,” REBOOT Technical
Report #41, 7 June 1992

[7] Caldiera, G., Basili, V. R., “Identifying and Qualifying
Reusable Software Components,” IEEE Computer, Vol.
24, No. 2, February 1991, pp. 61-70.

[8] Hislop, G. W., “Analyzing existing software for software
reuse”, Journal of Systems and Software, Vol. 41, 33-40,
1998.

[9] Boetticher, G., Srinivas, K., Eichmann, D., “A Neural Net-
based Approach to Software Metrics,” Proceedings of the
5th International Conference on Software Engineering and
Knowledge Engineering, San Francisco, CA, 14-18 June
1993, pp. 271-274.

[10] Torres, W. R., Samadzadeh, M. H., “Software Reuse ad
Information Theory Based Metrics,” Proc. 1991
Symposium on Applied Computing (SAC ‘91), Kansas
City, MO, 3-5 April 1991, pp.437-446.

[11] Edwards, S, “An Approach for Constructing Reusable
Software Components in Ada,” Strategic Defense
Organization Pub #Ada233 662, Washington, D. C.,
September 1990.

[12] Hooper, James W, and Chester, Rowena O., Software
Reuse Guidelines and Methods. Plenum Press, NY, 1991

[13] Hollingsworth, J., Software Component Design-for-Reuse:
A Language Independent Discipline Applied to Ada. PhD
Thesis, Dept. of Computer and Information Science, The
Ohio State University, Columbus, OH, 1992.

[14] NATO, “Standard for the Development of Reusable
Software Components,” NATO Communications and
Information Systems Agency, 18 August 1991.

[15] Sommerville, I., Masera, L., Dmaria, C., “Practical
Guidelines for Ada Reuse in an Industrial Envronment,
“Proceedings of the Second Symposium on Software
Quality Techniques a Acquisition Criteria, Florence, Italy,
29-31, May 1995, pp. 138-147.

 [16] Khairuddin, H., and Elizabeth K., “A Software Reusability
Attributes Model,” Journal of Computer Aided
Technology, Vol. 8, No. 1-2, 1995, pp. 69-77

[17] Tracz, W., “A Conceptual Model for Mega programming,”
ACM SIGSOFT Software Engineering Notes, Vol. 16, No.
3, July 1991, pp. 36-45.

[18] Habermann, A. N., Perry, D. E., “Well Formed System
Composition. Carnegie-Mellon University, Technical
Report CMU-CS-80-117. March 1980

[19] Perry, D. E., ``The Inscape Environment: A Practical
Approach to Specifications in Large-Scale Software
Development. A Position Paper.'' January 1990.

[20] Luckham, D. C., Vera, J., “An Event-Based Architecture
Definition Language.” IEEE Transactions on Software
Engineering, vol. 21, no. 9, pages 717-734, September
1995.

 [21] Paul R. A., Metrics guided Reuse, Proceedings of the
Seventh International Conference on Tools with Artificial
Intelligence,1995.

 [22] Perry, D. E., “Generic Descriptions for Product Line
Architectures”, ARES II Product Line Architecture
Workshop, Los Palmos, Gran Canaria, Spain, February
1998

[23] Bhattacharya, S. “Specification and Evaluation of
Technology Components to Enhance Reuse”, Masters
Thesis, The University of Texas at Austin, July 2000

	Contextual Reusability Metrics for Event-Based Architectures
	Sutirtha Bhattacharya
	PTD Automation
	Intel Corporation
	Hillsboro, OR – 97124
	sutirtha.bhattacharya@intel.com
	Dewayne E. Perry
	Abstract
	4.2.1 Proximity Metrics. The Proximity me�
	4.2.2 Component Compliance Metrics. These metrics measure th

