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Abstract 
Component Based Software Engineering has been 

perceived to have immense reuse potential. This area has 
evoked wide interest and has led to considerable 
investment in research and development effort. Most of 
these investigations have explored internal 
characteristics of software components such as 
correctness, reliability, maintainability, modularity, 
understandability, readability, interoperability, 
portability, generality and genericity for promoting 
reuse. But experience over the past decade has 
demonstrated that the usefulness of a component depends 
as much on the context into which it fits as it does on the 
internal characteristics of the component. This context 
takes into account the requirements of the domain and an 
architectural description is a useful way of representing 
that domain. In this paper, we present a set of reusability 
metrics designed to measure how well a software 
component fits into such an architectural context. 
 
1. Introduction 
 

Almost a decade and a half of architectural research, 
beginning with the Perry and Wolf paper [1], has resulted 
in significant progress in the area of Software 
Architecture, but it is evident that software engineering is 
still far from the maturity of other traditional engineering 
disciplines. Software Architecture was envisioned to be 
the agent that would catalyze the transformation of 
software engineering into a well understood discipline by 
driving standardization, developing architecture templates 
for well-understood domains and enabling systematic 
reuse of architectural components. That clearly has not 
happened. However, progress in the areas of Model 
Driven Architectures, Product Line Architectures, 
Architecture Description Languages and Architectural 
Styles form a strong basis and motivation for reuse.  

Software Reuse research has seen significant activity 
over the years. To quantify the benefits of reuse and for 
supporting objective decision making, reuse metrics have 
long been a subject of interest. It has been widely felt 
that, in some sense, researchers have fully explored most 

of the traditional methods of measuring reusability: 
complexity, module size, interface characteristics, etc. 
Though the research community does currently recognize 
the importance of the problem domain with regard to 
reuse, few have actually linked the context in which a 
component is used to the true “usefulness” of that 
component. We believe reuse research will benefit 
greatly by focusing on the framework in which a software 
component fits. So, if the reusability of a component 
depends on context, then reusability metrics need to 
include characteristics about the domain, the software 
architecture, and the associated environment.  

This paper discusses the use of software architecture 
descriptions as the 'context' of a software component. Our 
contextual metrics enable quantitative evaluation of the 
reusability of a software component based on its 
compliance to different elements of an architecture 
description. Reuse evaluations are also promoted by 
using these metrics to quantitatively evaluate the 
similarity between different components, measure a 
component’s coverage of functionality encoded in the 
architectural description and numerically track the 
evolution of a component in terms of system data and 
functionality. 

Section 2 of this paper gives a brief outline of related 
work done in the area of reusability measurement. 
Section 3 discusses the assumptions about the 
architectural 'context'. The proposed metrics are 
elaborated in Section 4. Section 5 briefly explains the use 
of these metrics and Section 6 concludes the paper. 

 
2. Reuse metric approaches 
 

State of the art approaches for measuring reusability 
fall into two basic categories: empirical and qualitative. 
Empirical methods depend on objective data and can 
normally be calculated automatically and inexpensively 
[2] while the qualitative methods generally rely on 
subjective assessment of the software’s adherence to 
some guidelines or standards [2]. We draw from Jeff 
Poulin’s book [3] to navigate these spaces of reusability 
measurement. 
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Empirical Methods: One of the most prominent 
approaches in this area is that by Prieto-Diaz and 
Freeman. They identified several program attributes - 
program size, program structure, program documentation, 
and reuse experience and proposed a faceted 
classification scheme for evaluating reusability based on 
these attributes [4]. Selby, on the other hand, proposed a 
module oriented, statistical study of reusability 
characteristics of software [5]. The ESPIRIT-2 project 
called REBOOT (Reuse Based on Object Oriented 
Techniques) developed a taxonomy of reusability 
attributes with four reusability factors [6]. Caldiera and 
Basili [7] proposed a module oriented empirical approach 
in which they stated that basic reusability attributes 
depend on component costs, quality, and usefulness. 
Using ideas drawn from plagiarism detection, Hislop 
proposed a module-oriented approach for evaluating 
components in terms of function, form and similarity [8]. 
Boetticher and Eichmann [9] explored the viability of 
using neural networks to generate reusability rankings of 
software. Torres and Samadzadeh established a 
relationship between information theory metrics and 
reusability metrics and concluded that reuse information 
metrics might help in selecting the optimum case among 
different reuse candidates [10]. 
 
Qualitative Methods: Since defining an objective 
reusability metric often proves difficult, many 
organizations provide subjective (non-empirical) 
guidance on identifying and building reusable software 
components. Some of the prominent approaches in this 
area include Edwards [11], Hooper and Chester [12], 
Hollingsworth [13] and NATO [14]. These guidelines 
generally involve an intuitive description of what a 
reusable component ought to look like and range in 
content from general discussions about designing for 
reuse to rigorous design points [13, 15]. Usually module 
oriented, the guidelines often elaborate on formatting and 
style requirements and identifies general “reusability” 
attributes. Notable among the studies on “reusability” 
attributes is the work of Khairuddin and Key, who have 
examined these attributes to construct a reusability model 
[16]. Another notable approach, the “3C Model,” [17] 
attempts to isolate the three design point specific 
dependencies of concept, content and context from each 
other during the implementation and design of a module. 
 
Summary: With the exception of the 3C Model, none of 
the approaches mentioned above include any software 
architecture or domain characteristics. They typically 
explore a component’s internal characteristics, which do 
not take into account the context (the requirements and 
architectural structure) in which the component operates.  

The set of metrics presented here quantitatively 
evaluates a software component with respect to (1) 
compliance/adherence to those functional and data 
requirements captured in the architectural description, (2) 
compliance/adherence to the architecture structure, (3) 
the architecture compliance and coverage of the domain 
architectural descriptions and (4) the evolution of 
compliance and coverage over different component 
versions.  These quantitative, contextual evaluations 
position this research as fundamentally different from 
previous work done in this area.   
 
3. Context assumptions 

 
The context of a software component is encoded in 

some form of system description. In 1980, Perry and 
Habermann [18] proposed a system description language 
and identified the rules for well-formed system 
compositions in terms of required and provided elements 
in configuration compositions. These compositions 
defined the context for evaluating the substitutability (or 
reuse) of one component for another. Since then we have 
seen the advent of architecture description languages 
(ADLs) to define basic system structures and establish 
constraints on those structures, their individual 
components and component interactions.  

In this research we use architecture descriptions to 
define the context for use and reuse.  Further, we make 
the following basic assumptions about these context 
descriptions in terms of their descriptive elements and 
format.  The description of each component in a 
architecture description consists of at least the following  
• Interface descriptions of the services that include 

associated input and output descriptions of the data 
and events, and the pre & post conditions; 

• Attributes descriptions; and  
• Behavioral descriptions.  

Interface descriptions of services are universally 
standard in almost all architecture description languages. 
Pre and post conditions have been used in several formal 
approaches to architectural description e.g. Inscape [19]. 
Event based behavioral descriptions have gained in 
popularity with Luckham’s Rapide [20]. 

With the above basis for the context, this research 
can be extended to model driven architectures, product 
line architectures, reference architectures and different 
expressions of architectural styles with less complete 
descriptions.  

 On the assumption that we have an asset base from 
which we choose components to use in the architecture 
description to instantiate that architecture, we propose the 
model in Figure 1 for asset component specification to 
capture the necessary information to be used in the 



 

contextual metrics.  We note that it consists of the same 
information we assume to be present in the architecture 
description 
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Figure 1: Asset Component Specification 

 
Creating the asset base then requires a specification 

activity, referred to here as Registration, to establish the 
necessary information (or mappings) needed to measure 
the usability of a component in a particular context.  
The following steps detail the Registration process: 
Step 1: Select an architectural component from the 
architectural specification 
Step 2a: For the services provided by the architectural 
component, capture the services supported by the 
component being registered in the Provided Service 
Specification.  
For each service: 
• Capture the Input and Output Data & Events 

supported by the component for the service in the 
Data and Event Specification 

• Capture the Pre and Post Conditions supported by the 
component for the provided service in the Pre and 
Post Condition Specifications 

Step 2b: Capture the services required by the component 
in the Required Services Specification by following the 
steps similar to Step 2a 
Step 3: For the Attributes in the architectural component, 
capture the attributes supported by the component in the 
Attribute Specification 
Step 4: For the Behavioral Units of the architectural 
component, capture the behavioral units supported by 
component in the Behavioral Unit Specification in the 
form of quintuples (State, Trigger, Guard, Effects and 
Target). A component may be registered to a subset of the 
quintuples for each state transition. 
Step 5: Repeat Steps 1-4 for all architectural components 
in the architectural specification. 
 
 

4. Proposed metrics 
 
In order for a software component to be reusable, its 

engineering characteristics need to be compatible with the 
envisioned target system in terms of its functional 
requirements. Though it may be possible to institute some 
well-defined approaches to engineer components that 
ensure reusability, there is still considerable amount of 
debate on this issue [21]. The set of metrics presented in 
this research, support a quantitative and objective 
evaluation of software components with respect to the 
context of the architecture description --- (i) the domain 
(functional and data) requirements contained in the 
architecture description and (ii) the architectural 
components. 

The metrics are categorized into Architecture 
Compliance Metrics and Component Characteristic 
Metrics. 
 
4.1 Architecture compliance metrics 
 

The Architecture Compliance Metrics measure the 
compliance of a software component to the constituent 
elements of the architecture description at different levels 
of granularity. The key metric is the Architectural 
Component Compliance Coefficient which measures the 
compliance of an asset component to a particular 
component in the architecture description, taking into 
account the (i) interfaces supported and required (ii) the 
data owned and (iii) behavior. For computing this metric, 
three other metrics are relevant – the Architectural 
Component Service Compliance Coefficient, the 
Architectural Component Attribute Compliance 
Coefficient and the Architectural Component Behavior 
Compliance Coefficient. This intuitively is analogous to 
our representation, thus providing objective measures for 
the three key aspects of any software component – the 
interfaces, the data, and the behavior. These compliance 
coefficients can be used to compare different software 
components for identifying a “best-fit” candidate when 
designing a system and attempting to reuse previously 
developed components. The metrics are discussed below. 
 
4.1.1 Architectural Component Service Compliance 
Coefficient. The Architectural Component Service 
Compliance Coefficient, ArchSvCoeff(d), is a measure of 
an asset  component’s compliance to all the provided as 
well as the required services of a particular architectural 
component. It is computed as the average of the asset 
component’s compliance to each of the required 
architectural services 

Service level compliance indicates the extent to 
which an asset component is compliant with a given 



 

functional requirement (service) defined in the 
architecture description. Six coefficients - the Input Data 
Compliance Coefficient, the Output Data Compliance 
Coefficient, the Input Event Compliance Coefficient, the 
Output Event Compliance Coefficient, the Pre-Conditions 
Compliance Coefficient and the Post-Conditions 
Compliance Coefficient are used to calculate service level 
compliance. Therefore for each service, s, in an 
architectural component, the following coefficients are 
defined: 

 
Input and Output Data Compliance Coefficient: The 
Input/Output Data Compliance Coefficients, IDCoeff(s)/ 
ODCoeff(s), are measures of how well an asset 
component registered to a given service s, in the 
architectural component, complies with the input /output 
data requirements for that service.  These coefficients are 
essentially the average of the ratios between the number 
of data elements to which the component is registered to 
the total number of data elements associated with a 
particular data entity, for all the input/output data entities. 
A data entity can be thought of as a data concept like 
‘Address’, while data elements are the sub-elements of 
that data concept like Street Address, City, State, Zip for 
our example. Thus 

∑
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Where  
IDEn(s)/ ODEn(s):  Set of Input/Output Data Entities for 
service s. 
IDElregd(s, en)/ ODElregd(s, en): Set of Input/Output Data 
Elements for the entity en of service s, to which the 
component is registered. 
IDEl(s, en)/ODEl(s, en): Set of Input/Output Data 
Elements for the entity en of service s. 
en:  An entity belonging to the set IDEn(s)/ODEn(s) 

Note that the above coefficients take into account the 
existence (or non-existence) of entities as well as the 
elements associated with these entities. A missing entity 
would affect the numerical values of these coefficients 
much more than a missing element. 

 
Input and Output Event Compliance Coefficient: The 
Input/Output Event Compliance Coefficient, 
IECoeff(s)/OECoeff(s), measures an asset component’s 
compliance to the input/output event requirements of a 
component service, s, in the architectural description. 
IECoeff(s)/ OECoeff(s), are the ratios between the total 
number of input/output events to which a component is 
registered to the total number of input/output events for 
service s. 

|IE(s)|
|(s)IE|IECoeff(s) regd

=     (3) 

|OE(s)|
|(s)OE|OECoeff(s) regd=     (4) 

Where 
( )regdIE s / ( )regdOE s : Set of Input/Output Events for 

service s, to which component is registered. 
( )IE s / ( )OE s : Set of Input/Output Events for service s. 

 
Pre and Post Condition Compliance Coefficient: The 
Pre/Post Condition Compliance Coefficient, 
PreCondCoeff(s)/PostCondCoeff(s), measures an asset 
component’s compliance to the pre and post condition 
requirements of a component service, s, in the 
architectural description. PreCondCoeff(s)/ 
PostCondCoeff(s) are the ratio between the total number 
of pre/post conditions to which a component is registered 
to the total number of pre/post conditions for service s. 

|PreCond(s)|
|(s)PreCond|ff(s)PreCondCoe regd=     (5) 

|)PostCond(s|
|(s)PostCond|eff(s)PostCondCo regd=     (6) 

Where 
PreCondregd(s)/PostCondregd(s):Set of Pre/Post Conditions 
for service s, to which component is registered. 
PreCond(s)/PostCond(s): Set of Pre/Post Conditions for 
service s. 

Using the above six coefficients, for a service s, we 
obtain a value for the compliance of an asset component 
to the service, s.  

 
Service Compliance Coefficient:The Service Compliance 
Coefficient, SvCoeff(s) measures an asset component’s 
overall compliance to the architecture component’s 
service, taking into account its compliance to input and 
output data (IDCoeff & ODCoeff), input and output 
events (IECoeff & OECoeff) and pre and post conditions 
(PreCondCoeff and PostCondCoeff). The Service 
Compliance Coefficient also takes into account the 
relative importance of the particular service in the 
architecture by considering the number of other services 
that directly affects or is affected by the service under 
consideration. SvCoeff(s) is essentially the weighted 
average of the Input and Output Data Compliance 
Coefficient, the Input and Output Event Compliance 
coefficient and the Pre and Post Condition Compliance 
Coefficient. 
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       (7) 
Where 
IDDep(s)/ ODDep(s): Total number of services 
generating /consuming the input/output data entities 
required by service s. 
IEDep(s)/OEDep(s): Total number of services that 
generate/depend on trigger events of /from the service s. 
PreCondDep(s)/PostCondDep(s): Total number of 
services responsible for the set of pre/post conditions 

The calculation of the service compliance metrics 
takes into account not only the associated data, events 
and pre/post conditions, it also factors in the input and 
output dependencies, thereby intuitively covering all the 
interface characteristics that are relevant to the given 
service. 

The Service Compliance Coefficient is calculated for 
each service that is provided or required by the 
component being registered. Finally, we compute the 
Architectural Component Service Compliance Coefficient 
i.e. the service compliance for all services in the 
architectural component. 

 
Architectural Component Service Compliance 
Coefficient: The Architectural Component Service 
Compliance Coefficient, ArchSvCoeff(d), is a measure of 
an asset component’s compliance to the services (both 
provided and required) of a particular architectural 
component. It is the average of the Service Compliance 
Coefficient of all the services associated with a particular 
architectural component. 

|ArchSv(d)|

SvCoeff(s)
f(d)ArchSvCoef DRACSv(d)s

∑
∈=     (8) 

Where, 
ArchSv(d): Set of services (provided and required) for 
architectural component d. 

Of course we can calculate separate coefficients for 
provided and required service by setting ArchSv(d) to the 
set of provided services or required services only. 
 
4.1.2  Architectural Component Attribute Compliance 
Coefficient. The Architectural Component Attribute 
Compliance Coefficient, ArchAttrCoeff(d), is a measure 
of an asset component’s compliance to all the data 
attributes of a particular architecture component. It is 
essentially the average of the components compliance to 
each of the attributes that it is registered to. 

ArchAttrCoeff(d) is measured in terms of the Data 
Attribute Compliance Coefficient or AttrCoeff(a). 
AttrCoeff(a) measures the extent to which an asset 
component is compliant with component data as specified 
in the architecture description. For each Data Attribute a 
in a architecture component, AttrCoeff(a) is calculated as: 

|Attr(a)|
|(a)Attr|a)AttrCoeff( regd

=     (9) 

Where 
( )regdAttr a : Set of elements in attribute a to which the 

component is registered. 
( )Attr a :      Set of all the elements of Attribute a. 
Finally we calculate, the ArchAttrCoeff(d) which is 

the average of the Data Attribute Compliance Coefficient 
of all the attributes associated with a particular 
architectural component. 

|)ArchAttr(d|

a)AttrCoeff(
eff(d)ArchAttrCo )ArchAttr(da

∑
∈=     (10) 

Where 
ArchAttr(d): Set of Attributes in arch. component d 
 
4.1.3 Architectural Component Behaviour 
Compliance Coefficient. The Architectural Component 
Behavior Compliance Coefficient measures the degree of 
compliance of an asset component to the behavior of an 
architectural component captured in the architecture 
descriptions. It is measured in terms of the Behavioral 
Unit Coefficient BehavUnitCoeff(bu), where 
BehavUnitCoeff(bu) is computed as below 

|l(bu)BehavUnitE|
|(bu)lBehavUnitE|oeff(bu)BehavUnitC regd=     (11) 

Where 
BehavUnitElregd(bu): Set of behavioral unit elements the 
component is registered to. 
BehavUnitEl(bu): Set of elements in a particular 
behavioral unit, where an element is one of the quintuples 
– State, Trigger, Guard, Effects and Target. 

With the above, we calculate the Architecture 
Component  Behavior Compliance Coefficient 

|nit(d)ArchBehavU|

oeff(bu)BehavUnitC
oeff(d)ArchBehavC nit(d)ArchBehavUbu

∑
∈=  (12) 

ArchBehavUnit(d): Set of Behavioral Units of 
architectural component d. 
 
4.1.4 Architectural Component Compliance 
Coefficient. Now using the Service Compliance Metric 
evaluated for each service, the Data Attribute Compliance 
Coefficient is evaluated for each attribute and the 
Behavioral Compliance Coefficient, the notion of a 
component’s overall compliance to a architectural 



 

component can be calculated. The Architectural 
Component Compliance Coefficient, ArchCoeff(d), 
measures the asset component’s overall compliance to an 
architectural component. 

|nit(d)ArchBehavU|
|)ArchAttr(d||AcchSv(d)|

|oeff(d)ArchBehavC
|nit(d)ArchBehavU|

eff(d)ArchAttrCo|)ArchAttr(d|
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d)ArchCoeff(
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×
+×

+×

=
 (13) 

As mentioned previously, these coefficients measure 
an asset component’s compliance to various elements of 
the architectural description. Therefore, if component A 
has a SvCoeff of 0.5 for a certain service in the 
architectural description and component B has a SvCoeff 
of 0.75 for the same service, it can be inferred that asset 
component B is more compliant to the architecture 
component and should be preferred over asset component 
A for that particular service implementation. On the same 
lines, if the goal is to implement a particular architectural 
component as a whole complying with the specified 
boundaries of functionality and data set forth by that 
component, then a component with a higher ArchCoeff 
(d) should be preferred.  
 
4.2 Component Characteristic Metrics 
 

While the Architecture Compliance Metrics 
calculated the compliance of an asset component to the 
various elements of the architecture description 
individually, these metrics did not capture the 
characteristics of a particular component as a whole. The 
Component Characteristic metrics address this aspect. 
These metrics evaluate characteristics of an asset 
component with respect to component functionality, 
component data and the component as a whole. The 
Component Characteristic metrics measure the 
compliance of an asset component with respect to the 
component data (characterized by all the attributes in the 
architectural description) and component functionality 
(characterized by all the services in the architectural 
description).  

The Component Characteristic Metrics are of two 
types (i) The Proximity Metrics and (ii) The Compliance 
Metrics. These metrics are discussed in the following 
sub-sections and they leverage the Architecture 
Compliance metrics derived in the previous section. 
 
4.2.1 Proximity Metrics. The Proximity metrics are 
defined to measure “closeness” of two versions of an 
asset component with respect to a) component 
functionality i.e. Interfaces/Services b) component data 
i.e. Attributes. In essence, these coefficients indicate the 

proximity of two asset versions with respect to the 
architectural description. The utility of these metrics lies 
in the fact that they give an insight into how a component 
has evolved in terms of domain data and domain 
functional requirements. 

Though the proximity metrics have been defined to 
measure “closeness” between two versions of the same 
asset component, the idea can be extended to measure 
proximity between two different components as well. 

 
Functional Proximity Metrics: The Functional Proximity 
Metrics leverage the Functional Model (the collection of 
services contained in the architectural description) to 
measure the similarity between two components with 
regard to the functional requirements the components 
satisfy.  

Let FC be the Functional Model Compliance Matrix 
representing the compliance of different versions of a 
component, tc,  to the services of the architectural 
description. Thus the matrix FC for two versions of 
component tc can be represented as 

FC=
1 1 1

2 2 2

1 2

v 1 v 2 v1

v 1 v 2 v2

                                                          

SvCoeff ( ) SvCoeff ( ) ... SvCoeff ( )
   

SvCoeff ( ) SvCoeff ( ) ... SvCoeff ( )

n

n

n

s s s

s s sv

s s sv

⎡ ⎤
⎢ ⎥
⎣ ⎦

  (14) 

Where 
v1 and v2 represents the two versions of the component, 
tc.  
s1 …sn represents the list of services from a particular 
architecture description. 
SvCoeffv1(sn), SvCoeffv2(sn)  represents the Service 
Compliance Coefficient of version v1 and v2 of the 
Component with the set of Services, sn, in the 
architectural description. 

Now, the Proximity Matrix with respect to the 
domain functionality, PMF, is defined as 
PMF = [FC][FC]T                            
Where [FC]T denotes the transpose of the matrix FC. 

The element PMFi,j represents the proximity of 
versions i and version j with respect to the Functional 
Model. The matrix PMF is not normalized. We use the 
Euclidean Vector Norm to normalize the matrix PMF. 
The normalized PMF restricts the value of the element 
PMFi,j  between zero and one. The formalized notation 
for deriving a normalized PMF using the Euclidean 
Vector norm is given below. 

The Functional Model Compliance Matrix for the 
software component, tc, can be written as: 
FC = [svt] v = 1 ….V, t = 1…T                           
Where svt   represents the Service Compliance 
Coefficient for version, v, of the component, tc, for 
service, s, in the architectural description. V represents 
the total number of versions of tc and T represents the 
total number of services in the architectural description. 



 

The Service Compliance vector, sv, is represented as  
sv = [sv,1    sv,2      sv,3       ……….sv,T  ]. 
We know from the Euclidean Vector Norm that 

 || sv || 2  =  
1/ 2

2

1

F

vt
t

s
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  

Using the Functional Model Compliance matrix, FC, 
it is now possible to define the proximity of two versions, 
say (u, v) of a component. The FC can be evaluated as the 
cosine of the angle formed by vectors sv  and su that can 

be computed as the dot product of 
2|| ||

v

v

s
s

 and  
2|| ||

u

u

s
s

, 

respectively. Thus the Normalized Proximity Matrix, 
PMFN, can be represented as 
PMFN =  [fuv] u = 1 ….V, v = 1…V           (15) 

where fuv    =       
1 v 2 u 2|| s || || s ||

F
vt ut

t

s s

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
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∑                 

After normalization, we are assured that uv0  f   1≤ ≤ . 
At the boundaries, the following interpretations can be 
made: 
fuv = 1: The versions u and v are exactly similar in terms 
of the Functional Model. 
fuv = 0: There is no similarity in the functional model 
coverage of the two versions of the component. In other 
words they satisfy non-overlapping sets of services in the 
architectural description. 

The higher the value of fuv the more similar the two 
versions of the component are and lower the value, the 
more dissimilar the two versions are with respect to 
functional requirements. 

 
Data Proximity Metrics: The Data Proximity Metrics 
leverage the Data Model (the collection of data attributes 
contained within the architectural description) to measure 
the similarity between two components with regard to the 
data requirements the components satisfy.  The treatment 
used for deriving the proximity metrics with respect to 
the Data Model is similar to the one used for deriving the 
proximity metrics with respect to the Functional Model. 
The only difference lies in the fact that the Data Model 
Compliance matrix, DC, is represented by 

DC = 
1 1 1

2 2 2

1 2

v 1 v 2 v1

v 1 v 2 v2

                                                           

AttrCoeff ( ) AttrCoeff ( ) ... AttrCoeff ( )
   

AttrCoeff ( ) AttrCoeff ( ) ... AttrCoeff ( )

n

n

n

a a a

a a av

a a av

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (16)  

Where 
 v1 and  v2 represent the versions of the Component, tc.  
a1 …an represents the list of attributes for a particular 
architectural description. 

AttrCoeffv1(an) represents the Attribute Compliance 
Coefficient of version v1 of the component with the 
attribute an in the architectural description. 

Rest of the derivation is exactly the same as the 
proximity metrics for the Functional Model. 
 
4.2.2 Component Compliance Metrics. These metrics 
measure the compliance of an asset component to the 
architectural description as a whole. The Compliance 
Metrics are of two types – the Static Compliance metrics 
and the Compliance Evolution metrics. The Static 
Compliance metrics measure the degree of compliance of 
a component to the System Data Model and the System 
Functional Model. The Compliance Evolution metrics 
measure the percentage change of a component from one 
version to another in terms of system data and 
functionality. 
 
Static Compliance Metrics: The Static Compliance 
metrics are termed ‘static’ as they measure the 
compliance of a given version of a component with 
respect to the Data and Functional Model.  

The Data Model Compliance Index, DCmI(v), for a 
version of a component measures the compliance to the 
complete Data Model of the System. It is calculated as  

DCmI(v) = 
|RegAttr(v)|

oeff(a)C(a).AttrC
RegAttr(v)a
∑

∈   (17) 

while the Functional Model Compliance Index 

       FCmI(v) =  
|RegSvc(v)|

ff(s)C(s).SvCoe
RegSvc(v)s
∑

∈    (18)           

Where 
RegAttr(v)/ RegSvc(v): Set of Attributes/Services in the 
architectural description to which the version v of the 
component is registered. 
C(a)/ C(s): Criticality of the Attribute/Service a/s . 
AttrCoeffv(a) SvCoeffv(s): Attribute/Service Compliance 
Coefficient for Attribute/Service a/s for version v of the 
component. 

The Criticality of the attribute/service is taken into 
account to reflect their relative importance in the System.  
If information regarding the criticality of data or services 
does not exist or is not specified, C(s) and C(a) should be 
set to one for all attributes and services. 

The System Model Compliance Index, which is the 
measure of a component’s overall compliance to the 
domain requirements as represented in the architectural 
description.  It is calculated as 

SysCmI(v) = 
2

FCmI(v)DCmI(v) +   (19) 



 

In a situation where a system integrator has two 
components to evaluate for satisfying a given 
functionality, the component with the higher value of 
SysCmI (v) should be selected if overall domain 
compliance is desired. 

 
Compliance Evolution Metrics: The Compliance 
Evolution metrics for a component are intended to 
measure the percentage change in the component’s 
compliance to the domain from one version to another. 

The Data Model Compliance Evolution Index, 
DCmE (vnew, vbase ), for a component, captures the 
percentage change in the compliance to the Data Model 
from one version to another and is calculated as 

DCmE(vnew, vbase) = x100
)DCmI(v

)DCmI(v)DCmI(v
base

basenew −  (20) 

Similarly, the Functional Model Compliance Evolution 
Index 

FCmE(vnew, vbase)= x100
)FCmI(v

)FCmI(v)FCmI(v
base

basenew −  (21) 

The rollup of data and functional evolution, the 
System Model Compliance Evolution Index, 
SysCmE(vnew, vbase), for a component, captures the 
percentage change in the component’s compliance to the 
overall domain requirements from one version to another 
and is calculated as in below. 
SysCmE (vnew, vbase ) =   

x100
)SysCmI(v

)SysCmI(v)SysCmI(v
base

basenew −        (22) 

In a typical software system, we are likely to see high 
positive values for compliance evolution indices, which 
would indicate that the new version of the component is 
more compliant to the domain. A negative value would 
indicate that the new component has lower compliance to 
the domain, which in most general cases is not desirable. 

 
5. Application of the Metrics 

 
Reusable components should ideally have high 

values for the Compliance and Coverage metrics. Target 
threshold values, which may come from Program 
Managers or System Integrators, could be used as design 
drivers when a reusable component is being built from 
scratch. The goal in such a case should be to aim for 

(i) high compliance to architecture functionality, 
(ii) high compliance to architecture data, and 
(iii) high compliance to architecture component 

description. 
For asset components, the Architecture Compliance 

metrics provide a useful mechanism for evaluating reuse 
potential of these components and help in decision-
making about suitability of reuse candidates. 

These metrics were applied in a sample University 
Registration System where the architectural description 
consisted of 45 services and 22 data entities distributed 
over 15 architectural components. The returned results 
corroborated intuitive understanding. Detailed elaboration 
of the experiment cannot be provided in this paper due to 
constraints of space. We present sample results to 
demonstrate the core concepts.  

Service Compliance Coefficient for two reusable 
components TEXv1.0 and ROSEv1.0 were calculated for 
a service “Add a Class”. Using formula (7), the Service 
Compliance Coefficient (SvCoeff) of TEX v1.0 was 
calculated as 0.84 while that of ROSE v1.0 was found to 
be 0.63 (Table 1). 
 

Table 1: Calculation of Service Compliance 

 
Thus for the “Add a Class” service TEX v1.0 was 

selected over ROSE v1.0 as it satisfied the functional 
requirement better. The reason for this better compliance 
was obvious when we explored the internal design of the 
two software components. For the “Add a class” service, 
TEX 1.0 supported more of the input data attributes in the 
architecture compared to ROSE 1.0. Further in TEX 1.0, 
the implementation of the service was such that it 
generated more of the output data attributes compared to 
ROSE resulting in a higher overall compliance to the 
output data of the architectural specification. Also for 
TEX 1.0 the service “Add a class” was triggered by the 
exact same set of events, as defined in the architecture, 
while the same was not true for ROSE 1.0. These distinct 
differences in the design of the two components were 
clearly brought out by our metrics. 

By considering the Service Compliance Coefficient 
of similar components, component developers would also 
be able to identify whether their component is 

System Architecture:  Student Registration 
Arch. Component Name: Registration System 
Service Name: Add a Class 
 TEX 

1.0 
ROSE 

1.0 
Input Data Compliance Coefficient: 
IDCoeff(s) 

0.94 0.89 

Input Data Dependency: IDDep(s) 1 1 
Output Data Compliance 
Coefficient: ODCoeff(s) 

0.75 0.45 

Output Data Dependency: ODDep(s) 1 1 
Input Event Compliance Coefficient: 
IECoeff(s) 

1 0.5 

Input Event Dependency: IEDep(s) 1 1 
Output Event Compliance 
Coefficient: IECoeff(s) 

0.67 0.67 

Output Event Dependency: IEDep(s) 1 1 
Service Compliance Metric: 
SvCoeff(s) 

0.84 0.63 



 

competitive enough (i.e. competitive against other 
components for the domain) for a particular service 
implementation and therefore take necessary steps to 
increase the reuse potential of their components. 

The calculation of the Architectural Component 
Compliance Coefficient (Table 2) revealed a typical 
scenario often encountered during architectural 
assessment – conflicts of reusability benefits. 

 
Table 2: Calculation of Arch. Component Compliance 

System Architecture:  Student Registration 
Arch. Component Name: Registration System 
# Services in Arch Component = |ArchSv(d)| = 4 
# Attributes in Arch Component = |ArchAttr(d)| = 1 

 TEX 1.0 ROSE 1.0 
Arch. Service Compliance 
Coefficient: ArchSvCoeff(d) 

0.74 0.77 

Arch Attribute Compliance 
Coefficient: ArchAttrCoeff(d) 

0.75 0.75 

Arch Component Compliance 
Coefficient: ArchCoeff(d) 

0.742 0.766 

 
Taking into account all the services and attributes in 

the architectural component “Registration System”, we 
calculate the overall Architectural Compliance 
Coefficient using formula (13). We observe that the value 
of ArchCoeff(d) for TEX v1.0 (0.742) is actually lower 
than that of ROSE v1.0 (0.766), though the difference 
itself is not significant. The System Integrator at this 
point may opt for TEX v1.0 if satisfying the “Add a 
Class” service per the architectural spec is more 
desirable. However if overall compliance is desired 
ROSE v1.0 would be a better candidate. For cases where 
the difference in the coefficient values is very small or 
insignificant, the more granular coefficients for the key 
services, attributes or behavioral units should be 
considered for identifying appropriate reuse candidates. 
This example revealed another important aspect of the 
proposed metrics. They can provide useful quantitative 
measures even in the absence of complete information 
thus enabling a mechanism for early architectural 
assessment. In our specific example behavioral 
information was not available for the “Student 
Registration” class and yet we could compute the 
architectural compliance coefficients. Of course the same 
analysis should be repeated as more information becomes 
available during architectural design for validation of 
decisions made early in the development life cycle. 

We also computed the Functional Proximity Metric 
and the Data Proximity Metric for two consecutive 
versions of TEX. The functional proximity metric worked 
out to 0.9911 while the data proximity metric worked out 
to 0.98. Recall that the higher the value of the proximity 
metric, more the similarity between the asset components. 
The metric values corroborated the fact that there was no 

major functional difference between the two versions of 
TEX and the second version mostly addressed bugs from 
the first version. A low value of the proximity metrics 
would imply major differences in functionality between 
two versions and flag the need for more regression testing 
prior to upgrade. 

It should be noted that the manual process of 
Registration (explained is Section 3) of asset components 
to the architecture description is fundamental to the 
application of these metrics. It is the Registration process 
that helps eliminate potential semantic differences 
between the terminology in the architecture description 
and the asset components. In our “Add a Class” example, 
if the same functionality is delivered using a different 
service (say “Register for a Class”) for a given asset 
component, it is the responsibility of the person 
registering the component to ensure that the mappings are 
correctly established. To be registered to an element of 
the architectural description essentially implies that the 
asset component supports the corresponding interface, 
data or behavior specified in the architecture. 

For a critical assessment of the metrics, it is fair to 
ask “Why these?” or “Why not other variations?” While 
we distinguish our research in general from other 
practitioners in Section 2, we do acknowledge that it is 
possible to define alternate variations of these metrics 
grounded in the same concept of architectural context. 
However, we believe that our set of metrics is a 
‘sufficient’ (though not necessarily ‘complete’) set for the 
kind of reasoning needed during architectural assessment 
for identifying reuse candidates. This has been borne out 
by our experience with the Registration System. The final 
test would of course be the application of these metrics 
for complex industrial systems. 
 
6. Conclusion 
 

The contextual metrics presented here provide a 
mechanism for a quantitative evaluation of software 
component reuse in the context of architecture 
requirements (functional and data) and architecture 
structure.  We leverage the requirements represented 
within an architectural description to provide the context 
for an asset component to evaluate the compliance of 
these components to the architectural description, and to 
assess the similarity between components, the 
component’s coverage of the architectural description, as 
well as numerically tracking the evolution of a 
component in terms of the architectural description. Our 
reusability assessment goes beyond simple interface 
matching and helps system integrators explore behavioral 
characteristics of components as well. These metrics 
provide a quantitative mechanism for assessing 
reusability leveraging the context of a component, thus 



 

distinguishing our research from previous attempts at 
reusability measurement. We extend the qualitative 
context-based assessment of the 3C Model and provide 
objective measures using the context of the overall 
architecture. 

These metrics are ‘generic metrics’ as the 
measurement indices are not constrained by the nature of 
the components being evaluated and can be applied to 
any component. Defining “generic metrics” has been one 
of the recognized goals of the reuse research community. 
These metrics provide simple yet realistic, quantitative 
measure of reuse potential and help evaluate the benefits 
of selecting one component over another at design time.  
They are intuitive in nature, are consistent, reproducible, 
and can be used to provide meaningful insight for various 
system stakeholders. 
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