

Contextual Reusability Metrics for Event-Based Architectures

Sutirtha Bhattacharya
PTD Automation
Intel Corporation

Hillsboro, OR – 97124
sutirtha.bhattacharya@intel.com

Dewayne E. Perry
Empirical Software Engineering Lab (ESEL)

ECE, The University of Texas at Austin
Austin, TX 78712

perry@ece.utexas.edu

Abstract
Component Based Software Engineering has been

perceived to have immense reuse potential. This area has
evoked wide interest and has led to considerable
investment in research and development effort. Most of
these investigations have explored internal characteristics
of software components such as correctness, reliability,
maintainability, modularity, understandability,
readability, interoperability, portability, generality and
genericity for promoting reuse. But experience over the
past decade has demonstrated that the usefulness of a
component depends as much on the context into which it
fits as it does on the internal characteristics of the
component. This context takes into account the
requirements of the domain and an architectural
description is a useful way of representing that domain.
In this paper, we present a set of reusability metrics
designed to measure how well a software component fits
into such an architectural context.

Keywords
Component Based Software Engineering, Reuse, Metrics,
Architectural Description

1. Introduction

Almost a decade and a half of architectural research,
beginning with the Perry and Wolf paper [1], has resulted
in significant progress in the area of Software
Architecture, but it is evident that software engineering is
still far from the maturity of other traditional engineering
disciplines. Software Architecture was envisioned to be
the agent that would catalyze the transformation of
software engineering into a well understood discipline by
driving standardization, developing architecture templates
for well-understood domains and enabling systematic
reuse of architectural components. That clearly has not
happened. However, progress in the areas of Model
Driven Architectures, Product Line Architectures,

Architecture Description Languages and Architecural
Styles form a strong basis and motivation for reuse.

Software Reuse research has seen significant activity
over the years. To quantify the benefits of reuse and for
supporting objective descision making, reuse metrics
have long been a subject of interest. It has been widely
felt that in some sense, researchers have fully explored
most of the traditional methods of measuring reusability:
complexity, module size, interface characteristics, etc.
Though the research community does currently recognize
the importance of the problem domain with regard to
reuse, few have actually linked the context in which a
component is used to the true “usefulness” of that
component. We believe reuse research will benefit
greatly by focusing on the framework in which a
component fits. So, if the reusability of a component
depends on context, then reusability metrics need to
include characteristics about the domain, the software
architecture, and the associated environment.

This paper discusses the use the software architecture
descriptions as the 'context' of a software component. Our
contextual metrics enable quantitative evaluation of the
reusability of a software component based on its
compliance to different elements of an architecture
description. Reuse evaluations are also promoted by
using these metrics to quantitatively evaluate the
similarity between different components, measure a
component’s coverage of functionality encoded in the
architectural description and numerically track the
evolution of a component in terms of system data and
functionality.

Section 2 of this paper gives a brief outline of related
work done in the area of reusability measurement.
Section 3 discusses the assumptions about the
architectural 'context'. The proposed metrics are
elaborated in Section 4. Section 5 briefly explains the use
of these metrics and Section 6 concludes the paper.

mailto:sutirtha.bhattacharya@intel.com

2. Reuse Metric Approaches

State of the art approaches for measuring reusability
fall into two basic categories: empirical and qualitative.
Empirical methods depend on objective data and can
normally be calculated automatically and inexpensively
[9] while the qualitative methods generally rely on
subjective assessment of the software’s adherence to
some guidelines or standards [9]. We draw from Jeff
Poulin’s book [5] to navigate these spaces of reusability
measurement.

Empirical Methods: One of the most prominent
approaches in this area is that by Prieto-Diaz and
Freeman. They identified several program attributes -
program size, program structure, program documentation,
and reuse experience and proposed a faceted
classification scheme for evaluating reusability based on
these attributes [2]. Selby, on the other hand, proposed a
module oriented, statistical study of reusability
characteristics of software [3]. The ESPIRIT-2 project
called REBOOT (Reuse Based on Object Oriented
Techniques) developed a taxonomy of reusability
attributes with four reusability factors[4]. Caldiera and
Basili [6] proposed a module oriented empirical approach
in which they stated that basic reusability attributes
depend on component costs, quality, and usefulness.
Using ideas drawn from plagiarism detection, Hislop
proposed a module-oriented approach for evaluating
components in terms of function, form and similarity [7].
Boetticher and Eichmann [8] explored the viability of
using neural networks to generate reusability rankings of
software. Torres and Samadzadeh established a
relationship between information theory metrics and
reusability metrics and concluded that reuse
information metrics might help in selecting the optimum
case among different reuse candidates [10].

Qualitative Methods: Since defining an objective
reusability metric often proves difficult, many
organizations provide subjective (non-empirical)
guidance on identifying and building reusable software
components. Some of the prominent approaches in this
area include Edwards [11], Hooper and Chester [12],
Hollingsworth [13] and NATO [14]. These guidelines
generally involve an intuitive description of what a
reusable component ought to look like and range in
content from general discussions about designing for
reuse to rigorous design points [13, 15]. Usually module
oriented, the guidelines often elaborate on formatting and
style requirements and identifies general “reusability”
attributes. Notable among the studies on “reusability”
attributes is the work of Khairuddin and Key, who have
examined these attributes to construct a reusability model

[16]. Another notable approach, the “3C Model,” [17]
attempts to isolate the three design point specific
dependencies of concept, content and context from each
other during the implementation and design of a module.

Summary: With the exception of the 3C Model, none of
the approaches mentioned above include any software
architecture or domain characteristics. They typically
explore a component’s internal characteristics, which do
not take into account the context (the requirements and
architectural structure) in which the software component
operates.

The set of metrics presented here quantitatively
evaluates a software component with respect to (1)
compliance/adherence to those functional and data
requirements captured in the architectural description, (2)
compliance/adherence to the architecture structure, (3)
the architecture compliance and coverage of the domain
architectural descriptions and (4) the evolution of
compliance and coverage over different component
versions. These quantitative, contextual evaluations
position this research as fundamentally different from
previous work done in this area.

3. Context Assumptions

The context of a software component is encoded in

some form of system description. In 1980, Perry and
Habermann [22] proposed a system description language
and identified the rules for well-formed system
compositions in terms of required and provided elements
in configuration compositions. These compositions
defined the context for evaluating the substitutability (or
reuse) of one component for another. Since then we have
seen the advent of architecture description languages
(ADLs) to define basic system structures and establish
constraints on those structures, their individual
components and component interactions.

In this research we use architecture descriptions to
define the context for use and reuse. Further, we make
the following basic assumptions about these context
descriptions in terms of their descriptive elements and
format. The description of each component in a
architecture description consists of at least the following
• Interface descriptions of the services that include

associated input and output descriptions of the data
and events, and the pre & post conditions;

• Attributes descriptions; and
• Behavioral descriptions.

Interface descriptions of services are universally
standard in almost all architecture description languages.
Pre and Post conditions have been used in several formal
approaches to architectural description e.g. Inscape [23].

Event based behavioral descriptions have gained in
popularity with Luckham’s Rapide [24].

With the above basis for the context, this research can
be extended to model driven architectures, product line
architectures, reference architectures and different
expressions of architectural styles with less complete
descriptions.

 On the assumption that we have an asset base from
which we choose components to use in the architecture
description to instantiate that architecture, we propose the
model in Figure 1 of an asset component specification to
capture the necessary information to be used in the
contextual metrics. We note that it consists of the same
information we assume to be present in the architecture
description.

Architectural

Functionality Spec

Architectural
Component Spec

Interface
Spec

Service Data
Spec

Service
Event Spec

Pre-Conditions
Spec

Post-Conditions
Spec

Input Data
Spec

Output Data
Spec

Input Event
Spec

Output
Event Spec

Behavioral
Spec

Provided
Service Spec

Required
Service Spec

Attribute
Spec

Behavioral Unit Spec
<State, Trigger, Guard,

Effects, Target>

Figure 1: Asset Component Specification

Creating the asset base then requires a specification

activity, referred to here as Registration, to establish the
necessary information needed to measure the usability of
a component in a particular architecture.

The following steps detail the Registration process:
Step 1: Select an architectural component from the
architectural specification
Step 2a: For the services provided by the architectural
component, capture the services supported by the
component being specified in the Provided Service
Specification.
For each service:
• Capture the Input and Output Data & Events

supported by the component for the service in the
Data and Event Specification

• Capture the Pre and Post Conditions supported by the
component for the provided service in the Pre and
Post Condition Specifications

Step 2b: Capture the services required by the component
in the Required Services Specification by following the
steps similar to Step 2a

Step 3: For the Attributes for the architectural component,
capture the attributes supported by the component in the
Attribute Specification
Step 4: For the Behavioral Units of the architectural
component, capture the behavioral units supported by
component in the Behavioral Unit Specification in the
form of quintuples (State, Trigger, Guard, Effects and
Target). A component may be registered to a subset of the
quintuples for each state transition.
Step 5: Repeat Steps 1-4 for all architectural components
in the architectural specification.

4. Proposed Metrics

In order for a software component to be reusable, its

engineering characteristics need to be compatible with the
envisioned target system in terms of its functional
requirements. Though it may be possible to institute some
well-defined approaches to engineer components that
ensure reusability, there is still considerable amount of
debate on this issue [18]. The set of metrics presented in
this research, support a quantitative and objective
evaluation of software components with respect to the
context of the architecture description --- (i) the domain
(functional and data) requirements contained in the
architecture description and (ii) the architectural
components.

The metrics are categorized into Architecture
Compliance Metrics and Component Characteristic
Metrics.

4.1 Architecture Compliance Metrics

The Architecture Compliance Metrics measure the
compliance of a software component to the constituent
elements of the architecture description at different levels
of granularity. The key metric is the Architectural
Component Compliance Coefficient which measures the
compliance of an asset component to a particular
component in the architecture description, taking into
account the (i) interfaces supported and required (ii) the
data owned and (iii) behavior. For computing this metric,
three other metrics are relevant – the Architectural
Component Service Compliance Coefficient, the
Architectural Component Attribute Compliance
Coefficient and the Architectural Component Behavior
Compliance Coefficient. This intuitively is analogous to
our representation, thus providing objective measures for
the three key aspects of any software component – the
interfaces, the data, and the behavior. These compliance
coefficients can be used to compare different software
components for identifying a “best-fit” candidate when

designing a system and attempting to reuse previously
developed components.

The metrics are discussed below.

4.1.1 Architectural Component Service
Compliance Coefficient.

The Architectural Component Service Compliance
Coefficient, ArchSvCoeff(d), is a measure of an asset
component’s compliance to all the provided as well as the
required services of a particular architectural component.
It is computed as the average of the asset component’s
compliance to each of the required architectural services

Service level compliance indicates the extent to which
an asset component is compliant with a given functional
requirement (service) defined in the architectural
description. Six coefficients, namely the Input Data
Compliance Coefficient, the Output Data Compliance
Coefficient, the Input Event Compliance Coefficient, the
Output Event Compliance Coefficient, the Pre-Conditions
Compliance Coefficient and the Post-Conditions
Compliance Coefficient are used to calculate the service
level compliance. Therefore for each service, s, in an
architectural component, the following coefficients are
defined:

Input and Output Data Compliance Coefficient

The Input/Output Data Compliance Coefficients,
IDCoeff(s)/ ODCoeff(s), are measures of how well an
asset component registered to a given service s, in the
architectural component, complies with the input /output
data requirements for that service. These coefficients are
essentially the average of the ratios between the number
of data elements to which the component is registered to
the total number of data elements associated with a
particular data entity, for all the input/output data entities.
A data entity can be thought of as a data concept like
‘Address’, while data elements are the sub-elements of
that data concept like Street Address, City, State, Zip for
our example. Thus

∑
∈

=
)(|),(|

|),(|
|)(|

1)(
sIDEnen

regd

ensIDEl
ensIDEl

sIDEn
sIDCoeff (1)

∑
∈

=
)(|),(|

|),(|
|)(|

1)(
sODEnen

regd

ensODEl
ensODEl

sODEn
sODCoeff (2)

Where
IDEn(s)/ ODEn(s): Set of Input/Output Data Entities for
service s.
IDElregd(s, en)/ ODElregd(s, en): Set of Input/Output Data
Elements for the entity en of service s, to which the
component is registered.
IDEl(s, en)/ODEl(s, en): Set of Input/Output Data
Elements for the entity en of service s.
en: An entity belonging to the set IDEn(s)/ODEn(s)

Input and Output Event Compliance Coefficient:
The Input/Output Event Compliance Coefficient,

IECoeff(s)/OECoeff(s), measures an asset component’s
compliance to the input/output event requirements of a
component service, s, in the architectural description.
IECoeff(s)/ OECoeff(s), are the ratios between the total
number of input/output events to which a component is
registered to the total number of input/output events for
service s.

|)(|
|)(|)(

sIE
sIEsIECoeff regd= (3)

|)(|
|)(|)(

sOE
sOEsOECoeff regd= (4)

Where
()regdIE s / ()regdOE s : Set of Input/Output Events for

service s, to which component is registered.
()IE s / ()OE s : Set of Input/Output Events for service s.

Pre and Post Condition Compliance Coefficient
The Pre/Post Condition Compliance Coefficient,

PreCondCoeff(s)/PostCondCoeff(s), measures an asset
component’s compliance to the pre and post condition
requirements of a component service, s, in the
architectural description. PreCondCoeff(s)/
PostCondCoeff(s) are the ratio between the total number
of pre/post conditions to which a component is registered
to the total number of pre/post conditions for service s.

|)(Pr|
|)(Pr|)(Pr

seCond
seCondseCondCoeff regd= (5)

|)(|
|)(|)(

sPostCond
sPostCondseffPostCondCo regd= (6)

Where
PreCondregd(s)/PostCondregd(s): Set of Pre/Post
Conditions for service s, to which component is
registered.
PreCond(s)/PostCond(s): Set of Pre/Post Conditions for
service s.

Using the above six coefficients, for a service s, we
obtain a value for the compliance of an asset component
to the service, s.
Service Compliance Coefficient:

The Service Compliance Coefficient, SvCoeff(s)
measures an asset component’s overall compliance to the
architecture component’s service, taking into account its
compliance to input and output data (IDCoeff &
ODCoeff), input and output events (IECoeff & OECoeff)
and pre and post conditions (PreCondCoeff and
PostCondCoeff). The Service Compliance Coefficient
also takes into account the relative importance of the
particular service in the architecture by considering the
number of other services that directly affects or is
affected by the service under consideration. SvCoeff(s) is

essentially the weighted average of the Input and Output
Data Compliance Coefficient, the Input and Output Event
Compliance coefficient and the Pre and Post Condition
Compliance Coefficient.

)()(Pr
)()()()(

)]()(
)(Pr)(Pr

)()()()(
)()()()([

)(

spPostCondDeseCondDep
sOEDepsIEDepsODDepsIDDep

seffPostCondCospPostCondDe
seCondCoeffseCondDep

sOECoeffsOEDepsIECoeffsIEDep
sODCoeffsODDepsIDCoeffsIDDep

sSvCoeff

++
+++

×+
×+

×+×+
×+×

=

 (7)
Where
IDDep(s)/ ODDep(s): Total number of services
generating the input/output data entities required by
service s.
IEDep(s)/OEDep(s): Total number of services that
generate/depend on all the trigger events of /from the
service s.
PreCondDep(s)/PostCondDep(s): Total number of
services responsible for the set of pre/post conditions

The Service Compliance Coefficient for each service
is calculated for each service that is provided or required
by the component being registered. Finally, we compute
the Architectural Component Service Compliance
Coefficient i.e. the service compliance for all services in
the architectural component.

Architectural Component Service Compliance
Coefficient:

The Architectural Component Service Compliance
Coefficient, ArchSvCoeff(d), is a measure of an asset
component’s compliance to the services (both provided
and required) of a particular architectural component. It is
the average of the Service Compliance Coefficient of all
the services associated with a particular architectural
component.

|)(|

)(
)()(

dArchSv

sSvCoeff
dfArchSvCoef dDRACSvs

∑
∈= (8)

Where,
ArchSv(d): Set of services (provided and required) for
architectural component d.

Off course we can calculate separate coefficients for
provided and required service by setting ArchSv(d) to the
set of provided services or required services only.

4.1.2 Architectural Component Attribute Compliance
Coefficient

The Architectural Component Attribute Compliance
Coefficient, ArchAttrCoeff(d), is a measure of an asset
component’s compliance to all the data attributes of a
particular architecture component. It is essentially the
average of the components compliance to each of the

attributes that it is registered to. ArchAttrCoeff(d) is
measured in terms of the Data Attribute Compliance
Coefficient or AttrCoeff(a). AttrCoeff(a) measures the
extent to which an asset component is compliant with
component data as specified in the architecture
description. For each Data Attribute a in a architecture
component, AttrCoeff(a) is calculated as:

|)(|
|)(|)(

aAttr
aAttraAttrCoeff regd= (9)

Where
()regdAttr a : Set of elements in attribute a to which the

component is registered.
()Attr a : Set of all the elements of Attribute a.

Finally we calculate, the ArchAttrCoeff(d) which is
the average of the Data Attribute Compliance Coefficient
of all the attributes associated with a particular
architectural component.

|)(|

)(
)()(

dArchAttr

aAttrCoeff
deffArchAttrCo dArchAttra

∑
∈= (10)

Where
ArchAttr(d): Set of Attributes in architecture component d

4.1.3 Architectural Component Behaviour
Compliance Coefficient

The Architectural Component Behavior Compliance
Coefficient measures the degree of compliance of an asset
component to the behavior of an architectural component
captured in the architecture descriptions. It is measured in
terms of the Behavioral Unit Coefficient
BehavUnitCoeff(bu), where BehavUnitCoeff(bu) is
computed as below

|)(|
|)(|)(

bulBehavUnitE
bulBehavUnitEbuoeffBehavUnitC regd= (11)

Where
BehavUnitElregd(bu): Set of behavioral unit elements the
component is registered to.
BehavUnitEl(bu): Set of elements in a particular
behavioral unit, where an element is one of the quintuples
– State, Trigger, Guard, Effects and Target.

With the above, we calculate the Architecture
Component Behavior Compliance Coefficient

|)(|

)(
)()(

dnitArchBehavU

buoeffBehavUnitC
doeffArchBehavC dnitArchBehavUbu

∑
∈= (12)

ArchBehavUnit(d): Set of Behavioral Units of
architectural component d.

4.1.4 Architectural Component Compliance
Coefficient

Now using the Service Compliance Metric evaluated
for each service, the Data Attribute Compliance

Coefficient is evaluated for each attribute and the
Behavioral Compliance Coefficient, the notion of a
component’s overall compliance to a architectural
component can be calculated. The Architectural
Component Compliance Coefficient, ArchCoeff(d),
measures the asset component’s overall compliance to an
architectural component.

|)(|
|)(||)(|

|)(
|)(|

)(|)(|
)(|)(|

)(

dnitArchBehavU
dArchAttrdAcchSv

doeffArchBehavC
dnitArchBehavU

deffArchAttrCodArchAttr
dfArchSvCoefdArchSv

dArchCoeff
++

×
+×

+×

=

 (13)
As mentioned previously, these coefficients measure

an asset component’s compliance to various elements of
the architectural description. Therefore, if component A
has a SvCoeff of 0.5 for a certain service in the domain
and component B has a SvCoeff of 0.75 for the same
service, it can be inferred that asset component B is more
compliant to the architecture component and should be
preferred over asset component A for that particular
service implementation. On the same lines, if the goal is
to implement a particular architectural component as a
whole complying with the specified boundaries of
functionality and data set forth by the Architectural
Component, then a component with a higher ArchCoeff
(d) should be preferred.

4.2 Component Characteristic Metrics

While the Architecture Compliance Metrics calculated
the compliance of an asset component to the various
elements of the architectural description individually,
these metrics did not capture the characteristics of a
particular component as a whole. The Component
Characteristic metrics address this aspect. These metrics
evaluate characteristics of an asset component with
respect to component functionality, component data and
the component as a whole. The Component Characteristic
metrics measure the compliance and coverage of an asset
component with respect to the component data
(characterized by all the attributes in the architectural
description) and component functionality (characterized
by all the services in the architectural description).

The Component Characteristic Metrics are of three
types (i) The Proximity Metrics, (ii) The Compliance
Metrics & (iii) The Coverage Metrics. These metrics are
discussed in the following sub-sections and they leverage
the Architecture Compliance metrics derived in the
previous section.

4.2.1 Proximity Metrics

The Proximity metrics are defined to measure
“closeness” of two versions of an asset component with
respect to a) component functionality i.e.
Interfaces/Services b) component data i.e. Attributes. In
essence, these coefficients indicate the proximity of two
asset versions with respect to the architectural
description. The utility of these metrics lies in the fact
that they give an insight into how a component has
evolved in terms of domain data and domain functional
requirements.

Though the proximity metrics have been defined to
measure “closeness” between two versions of the same
asset component, the idea can be extended to measure
proximity between two different components as well.

Functional Proximity Metrics

The Functional Proximity Metrics leverage the
Functional Model (the collection of services contained in
the architectural description) to measure the similarity
between two components with regard to the functional
requirements the components satisfy.

Let FC be the Functional Model Compliance Matrix
representing the compliance of different versions of a
component, tc, to the services of the architectural
description. Thus the matrix FC for two versions of
component tc can be represented as

FC=
1 1 1

2 2 2

1 2

v 1 v 2 v1

v 1 v 2 v2

SvCoeff () SvCoeff () ... SvCoeff ()

SvCoeff () SvCoeff () ... SvCoeff ()

n

n

n

s s s

s s sv

s s sv

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (14)
Where
v1 and v2 represents the two versions of the component,
tc.
s1 …sn represents the list of services from a particular
architecture description.
SvCoeffv1(sn), SvCoeffv2(sn) represents the Service
Compliance Coefficient of version v1 and v2 of the
Component with the set of Services, sn, in the
architectural description.

Now, the Proximity Matrix with respect to the domain
functionality, PMF, is defined as
PMF = [FC][FC]T
Where [FC]T denotes the transpose of the matrix FC.

The element PMFi,j represents the proximity of
versions i and version j with respect to the Functional
Model. The matrix PMF is not normalized. We use the
Euclidean Vector Norm to normalize the matrix PMF.
The normalized PMF restricts the value of the element
PMFi,j between zero and one. The formalized notation
for deriving a normalized PMF using the Euclidean
Vector norm is given below.

The Functional Model Compliance Matrix for the
software component, tc, can be written as:

FC = [svt] v = 1 ….V, t = 1…T
Where svt represents the Service Compliance
Coefficient for version, v, of the Component, tc, for
service, s, in the architectural description. V represents
the total number of versions of tc and T represents the
total number of services in the architectural description.
The Service Compliance vector, sv, is represented as
sv = [sv,1 sv,2 sv,3 ……….sv,T].
We know from the Euclidean Vector Norm that

 || sv || 2 =
1/ 2

2

1

F

vt
t

s
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

Using the Functional Model Compliance matrix, FC, it
is now possible to define the proximity of two versions,
say (u, v) of a component. The FC can be evaluated as the
cosine of the angle formed by vectors sv and su that can

be computed as the dot product of
2|| ||

v

v

s
s

 and
2|| ||

u

u

s
s

,

respectively. Thus the Normalized Proximity Matrix,
PMFN, can be represented as
PMFN = [fuv] u = 1 ….V, v = 1…V (15)

where fuv =
1 v 2 u 2|| s || || s ||

F
vt ut

t

s s

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

After normalization, we are assured that uv0 f 1≤ ≤ .
At the boundaries, the following interpretations can be
made:
fuv = 1: The versions u and v are exactly similar in terms
of the Functional Model.
fuv = 0: There is no similarity in the functional model
coverage of the two versions of the component. In other
words they satisfy non-overlapping sets of services in the
architectural description.

The higher the value of fuv the more similar the two
versions of the component are and lower the value, the
more dissimilar the two versions are with respect to
functional requirements.

Data Proximity Metrics

The Data Proximity Metrics leverage the Data Model
(the collection of data attributes contained within the
architectural description) to measure the similarity
between two components with regard to the data
requirements the components satisfy. The treatment used
for deriving the proximity metrics with respect to the
Data Model is similar to the one used for deriving the
proximity metrics with respect to the Functional Model.
The only difference lies in the fact that the Data Model
Compliance matrix, DC, is represented by

DC =

1 1 1

2 2 2

1 2

v 1 v 2 v1

v 1 v 2 v2

AttrCoeff () AttrCoeff () ... AttrCoeff ()

AttrCoeff () AttrCoeff () ... AttrCoeff ()

n

n

n

a a a

a a av

a a av

⎡ ⎤
⎢ ⎥
⎣ ⎦

 (16)

Where
 v1 and v2 represent the versions of the Component, tc.
a1 …an represents the list of attributes for a particular
architectural description.
AttrCoeffv1(an) represents the Attribute Compliance
Coefficient of version v1 of the component with the
attribute an in the architectural description.

All other derivations and implications are exactly the
same as the proximity metrics for the Functional Model.

4.2.2 Component Compliance Metrics

These metrics measure the compliance of an asset
component to the architectural description as a whole.
The Compliance Metrics are of two types – the Static
Compliance metrics and the Compliance Evolution
metrics. The Static Compliance metrics measure the
degree of compliance of a component to the System Data
Model and the System Functional Model. The
Compliance Evolution metrics measure the percentage
change of a component from one version to another in
terms of system data and functionality.

Static Compliance Metrics

The Static Compliance metrics are termed ‘static’ as
they measure the compliance of a given version of a
component with respect to the Data and Functional
Model.

The Data Model Compliance Index, DCmI(v), for a
version of a component measures the compliance to the
complete Data Model of the System. It is calculated as

DCmI(v) =
v

a RegAttr(v)

C(a) . AttrCoeff (a)

| RegAttr(v) |

∈

∑
, (17)

while the Functional Model Compliance Index

FCmI(v) =

v

s RegSvc(v)

C(s) . SvCoeff (s)

| RegSvc(v) |

∈

∑
 (18)

Where
RegAttr(v)/ RegSvc(v): Set of Attributes/Services in the
architectural description to which the version v of the
component is registered.
C(a)/ C(s): Criticality of the Attribute/Service a/s in the
domain.

AttrCoeffv(a) SvCoeffv(s): Attribute/Service Compliance
Coefficient for Attribute/Service a/s for version v of the
component.

The Criticality of the attribute/service is taken into
account to reflect the relative importance in the System.
If information regarding the criticality of data or services
does not exist or is not specified, C(s) and C(a) should be
specified as 1.

The System Model Compliance Index, which is the
measure of a component’s overall compliance to the
domain requirements as represented in the architectural
description. It is calculated as

SysCmI(v) =
() + ()

2

DCmI v FCmI v
 (19)

In a situation where a system integrator has two
components to evaluate for satisfying a given
functionality, he/she should select a component with the
higher value of SysCmI (v) if overall domain compliance
is desired.

Compliance Evolution Metrics

The Compliance Evolution metrics for a component
are intended to measure the percentage change in the
component’s compliance to the domain from one version
to another.

The Data Model Compliance Evolution Index, DCmE
(vnew, vbase), for a component, captures the percentage
change in the compliance to the Data Model from one
version to another and is calculated as

DCmE (vnew, vbase) =
() - D ()

 x 100
()

new base

base

DCmI v CmI v

DCmI v
 (20)

Similarly, the Functional Model Compliance Evolution
Index

FCmE (vnew, vbase) = () - ()
x 100

()
new base

base

FCmI v FCmI v

FCmI v
 .(21)

The rollup of data and functional evolution, the
System Model Compliance Evolution Index,
SysCmE(vnew, vbase), for a component, captures the
percentage change in the component’s compliance to the
overall domain requirements from one version to another
and is calculated as in below.

SysCmE (vnew, vbase) =

100
)(

)()(X
vSysCmI

vSysCmIvSysCmI
base

basenew − (22)

In a typical software system, we are likely to see high
positive values for compliance evolution indices, which

would indicate that the new version of the component is
more compliant to the domain. A negative value would
indicate that the new component has lower compliance to
the domain, which in most general cases is not desirable.

4.2.3 Component Coverage Metrics

The Component Coverage Metrics measure how much
of the Data and the Functional Model is covered by a
component. Similar to the Compliance metrics, the
Coverage metrics are of 2 types (i) The Static Coverage
Metrics and (ii) The Coverage Evolution Metrics. These
metrics are explained below.

Static Coverage Metrics

The Static Coverage Metrics measure the coverage of
the Functional & Data Model by a particular version of a
software component. These are very simple indices which
capture how much of a domain is covered by a
component and is intended to facilitate decision making
with respect to the scope of individual components for a
system deployment.
The Data Model Coverage Index,

DCvI(v) = | Re () |

| () |

gAttr v

RAAttr ra
 (23)

while the Functional Model Coverage Index,

FCvI(v) =
| Re () |

| () |

gSvc v

RASvc ra
 (24)

Where
RegAttr(v)/ RegSvc(v): Set of attributes/services in the
architectural description to which the version v of the
component is registered.
RAAttr(ra)/ RASvc(ra): Set of all the attributes in the
architectural description, ra.

The overall System model Coverage Index with
respect to both functions and data is calculated as

SysCvI(v) = () ()

2

DCvI v FCvI v+
 (25)

The Static Coverage metrics support the first level
decision making for short listing of potential asset
components for a given set of functionality. After the
shortlist is made, the component compliance metrics,
explained in the previous section, should be used for
identifying the most suitable candidate.

Coverage Evolution Metrics

The Coverage Evolution Metrics measures the
percentage change in the coverage of the Functional &
Data Model as well as the overall System Model as a
component evolves from one version to another. These

metrics are intended to facilitate system evolution
decisions.

The Data Model Coverage Evolution Index measures
the change in the coverage of the Data Model as the
component evolves from version vbase to vnew and is
calculated as:

DCvE (vnew, vbase) = () - DCv ()
 x 100

()
new base

base

DCvI v I v

DCvI v
 (26)

The Functional Model Coverage Evolution Index,
which measures the change in coverage of the Functional
Model from version vbase to vnew is computed as:

FCvE (vnew, vbase) = () - FCv ()
 x 100

()
new base

base

FCvI v I v

FCvI v
 (27)

Similar to the Static Compliance Metrics, the overall
System Model Coverage Evolution Index, which
measures the percentage change in the overall coverage
of the domain requirements between two versions of the
component is calculated as
SysCvE(vnew,vbase)=

100
)(

)()(X
vSysCvI

vSysCvIvSysCvI
base

basenew − (28)

The Coverage Evolution indices help track the

functional change in a component from one version to the
next. Off course these metrics are equally applicable for
comparing different applications, when used in the
correct context.

5. Application of the Metrics

Reusable components should ideally have high values
for the Compliance and Coverage metrics. Target
threshold values, which may come from Program
Managers or System Integrators, could be used as design
drivers when a reusable component is being built from
scratch. The goal in such a case should be to aim for

(i) High compliance to architecture functionality,
(ii) High compliance to architecture data, and
(iii) High compliance to architecture component

description.
For asset components, the Architecture Compliance

metrics provide a useful mechanism for evaluating reuse
potential of these components and help in decision-
making about suitability of reuse candidates.

These metrics were applied in a sample University
Registration System where the architectural description
consisted of 45 services and 22 data entities distributed
over 15 architectural components. The returned results
were quite satisfactory. Detailed elaboration of the
experiment cannot be provided in this paper due to

constraints of space. We present a single result for
demonstrating the concept.

Service Compliance Coefficient for two reusable
components TEX1.0 and ROSEv1.0 were calculated. The
Service Compliance Coefficient (SvCoeff) of TEX v1.0
was 0.84 while that of ROSE v1.0 was 0.63 (Table 1).
The values are calculated using formula (7). Thus for the
given service “Add a Class”, TEX 1.0 was selected over
ROSE v1.0 as it satisfied the functional requirement
better.

Table 1: Calculation of Service Compliance

By considering the Service Compliance Coefficient of

similar components, component developers would be able
to identify whether their component is competitive
enough (i.e. competitive against other components for the
domain) for a particular service implementation and
therefore take necessary steps to increase the reuse
potential of their components.

It’s worth mentioning in this context that we are
currently in the process of building a tool that would
automate the registration process and calculate the
metrics for architectural evaluation.

6. Conclusion

The contextual metrics presented here provide a
mechanism for a quantitative evaluation of software
component reuse in the context of architecture
requirements (functional and data) and architecture
structure. We leverage the requirements represented
within an architectural description to provide the context

System Architecture: Student Registration
Arch. Component Name: Registration System
Service Name: Add a class
 TEX v1.0 ROSE v1.0
Input Data Compliance
Coefficient – IDCoeff(s)

0.94 0.89

Input Data Dependency –
IDDep(s)

1 1

Output Data Compliance
Coefficient – ODCoeff(s)

0.75 0.45

Output Data Dependency –
ODDep(s)

1 1

Input Event Compliance
Coefficient - IECoeff(s)

1 0.5

Input Event Dependency –
IEDep(s)

1 1

Output Event Compliance
Coefficient - IECoeff(s)

0.67 0.67

Output Event Dependency –
IEDep(s)

1 1

Service Compliance Metric –
SvCoeff(s)

0.84 0.63

for an asset component to evaluate the compliance of
these components to the architectural description, and to
assess the similarity between components, the
component’s coverage of the architectural description, as
well as numerically tracking the evolution of a
component in terms of the architectural description. Not
only do our metrics provide objective measures in the
context of the architecture, they also enable quantitative
decision-making regarding the behavior of components.
Our reusability assessment thus goes beyond simple
interface matching and helps system integrators explore
behavioral characteristics of components as well.

These metrics are ‘generic metrics’ as the
measurement indices are not constrained by the nature of
the components being evaluated and can be applied to
any component. Defining “generic metrics” has been one
of the recognized goals of the reuse research community.
These metrics provide simple yet realistic, quantitative
measure of reuse potential from a domain perspective and
help evaluate the benefits of selecting one component
over another at design time. They are intuitive in nature,
are consistent, reproducible, and can be used to provide
meaningful insight for various system stakeholders.

7. References

[1] Perry, D. E., Wolf, A. L., “Foundations for the Study of

Software Architectures”, ACM Software Engineering
Notes, 17, 4, October 1992, 40-52

[2] Prieto-Diaz, Ruben, and Peter Freeman, “Classifying
Software for Reusability,” IEEE Software, Vol. 4, No. 1,
January 1987, pp. 6-16.

[3] Selby, Richard W., “Quantitative Studies of Software
Reuse,” in Software Reusability, Volume 2, Ted J.
Biggerstaff and Alan J. Perlis, eds. Addison-Wesley,
Reading, MA, 1989.

[4] Karlson, Even-Andre, Guttorm Sindre, and Tor Stalhane,
“Techniques for Making More Reusble
Components,”REBOOT Technical Report #41, 7 June
1992

[5] Jeffrey S. Poulin, “Measuring Software Reuse – Principles,
Practices and Economic Models”, Addison-Wesley, 1996

[6] Caldiera, Gianluigi, and Victor R. Basili, “Identifying and
Qualifying Reusable Software Components,” IEEE
Computer, Vol. 24, No. 2, February 1991, pp. 61-70.

[7] Hooper, James W., and Chester, Rowena O., Software
Reuse Guilines and Methods. Plenum Press, NY, 1991.

[8] Boetticher, G.,K. Srinivas, and D. Eichmann “A Neural
Net-based Approach to Software Metrics,” Proceedings of
the 5th International Conference on Software Engineering
and Knowledge Engineering, San Francisco, CA, 14-18
June 1993, pp. 271-274,

[9] Tracz, Will, “Software Reuse Maxims,” ACM SIGSOFT
Software Engineering Notes, Vol. 13, No. 4, October 1998,
pp. 28-31

 [10] Torres, William R., and Mansur H. Samadzadeh,

“Software Reuse ad Information Theory Based Metrics,”
Proc. 1991 Symposium on Applied Computing (SAC ‘91),
Kansas City, MO, 3-5 April 1991, pp.437-446.

[11] Edwards, Stephan, “An Approach for Constructing
Reusable Software Components in Ada,” Strategic Defense
Organization Pub #Ada233 662, Washington, D. C.,
September 1990.

[12] Hooper, James W, and Chester, Rowena O., Software
Reuse Guidelines and Methods. Plenum Press, NY, 1991

[13] Hollingsworth, Joe, Software Component Design-for-
Reuse: A Language Independent Discipline Applied to
Ada. Ph. D. Thesis, Dept. of Computer and Information
Science, The Ohio State University, Columbus, OH, 1992.

[14] NATO, “Standard for the Development of Reusable
Software Components,” NATO Communications and
Information Systems Agency, 18 August 1991.

[15] Sommerville, I., L. Masera, and C. Dmaria, “Practical
Guidelines for Ada Reuse in an Industrial Envronment,
“Proceedings of the Second Symposium on Software
Quality Techniques a Acquisition Criteria, Florence, Italy,
29-31, May 1995, pp. 138-147. URL:
htp://www.comp.lancs.ac.uk/computing/research/cseg/proj
ects/APPRAISAL/

 [16] Khairuddin, H., and Elizabeth K., “A Software Reusability
Attributes Model,” Journal of Computer Aided
Technology, Vol. 8, No. 1-2, 1995, pp. 69-77

[17] Tracz, Will, “A Conceptual Model for Mega
programming,” ACM SIGSOFT Software Engineering
Notes, Vol. 16, No. 3, July 1991, pp. 36-45.

[18] Paul R. A., Metrics guided Reuse, Proceedings of the
Seventh International Conference on Tools with Artificial
Intelligence,1995.

[19] K. S. Barber and Sutirtha Bhattacharya, "Representing
Technology to Promote Reuse in the Software Design
Process," In Proceedings of the 15th IEEE Conference on
Automated Software Engineering, 2000, Grenoble, France,
11-15 September 2000, pages 285-288.

[20] Barber, K. S. and Bhattacharya, S.“A Representational
Framework for Technology Component Reuse,” 13th
International Conference on Software & Systems
Engineering and their Applications (ICSSEA'2000),
Volume 1, Session 2, Section 1, December 5–8, 2000,
Paris, France.

[21] Perry, D. E.,”Generic Descriptions for Product Line
Architectures''. ARES II Product Line Architecture
Workshop, Los Palmos, Gran Canaria, Spain, February
1998

[22] Habermann, A. N., Perry, D. E., “Well Formed System
Composition. Carnegie-Mellon University, Technical
Report CMU-CS-80-117. March 1980

[23] Perry, D. E., ``The Inscape Environment: A Practical
Approach to Specifications in Large-Scale Software
Development. A Position Paper.'' January 1990.

[24] D. C. Luckham, D. C., Vera, J., “An Event-Based
Architecture Definition Language.” IEEE Transactions on
Software Engineering, vol. 21, no. 9, pages 717-734,
September 1995.

[25] Bhattacharya, S. “Specification and Evaluation of
Technology Components to Enhance Reuse,” Masters
Thesis, The University of Texas at Austin, July 2000

	Contextual Reusability Metrics for Event-Based Architectures
	Sutirtha Bhattacharya
	PTD Automation
	Intel Corporation
	Hillsboro, OR – 97124
	sutirtha.bhattacharya@intel.com
	Dewayne E. Perry
	Abstract
	4.2.1 Proximity Metrics
	4.2.2 Component Compliance Metrics
	4.2.3 Component Coverage Metrics

