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Abstract 
Component Based Software Engineering has been 

perceived to have immense reuse potential. This area has 
evoked wide interest and has led to considerable 
investment in research and development effort. Most of 
these investigations have explored internal characteristics 
of software components such as correctness, reliability, 
maintainability, modularity, understandability, 
readability, interoperability, portability, generality and 
genericity for promoting reuse. But experience over the 
past decade has demonstrated that the usefulness of a 
component depends as much on the context into which it 
fits as it does on the internal characteristics of the 
component. This context takes into account the 
requirements of the domain and an architectural 
description is a useful way of representing that domain. 
In this paper, we present a set of reusability metrics 
designed to measure how well a software component fits 
into such an architectural context. 
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1. Introduction 
 

Almost a decade and a half of architectural research, 
beginning with the Perry and Wolf paper [1], has resulted 
in significant progress in the area of Software 
Architecture, but it is evident that software engineering is 
still far from the maturity of other traditional engineering 
disciplines. Software Architecture was envisioned to be 
the agent that would catalyze the transformation of 
software engineering into a well understood discipline by 
driving standardization, developing architecture templates 
for well-understood domains and enabling systematic 
reuse of architectural components. That clearly has not 
happened. However, progress in the areas of Model 
Driven Architectures, Product Line Architectures, 

Architecture Description Languages and Architecural 
Styles form a strong basis and motivation for reuse.  

Software Reuse research has seen significant activity 
over the years. To quantify the benefits of reuse and for 
supporting objective descision making, reuse metrics 
have long been a subject of interest. It has been widely 
felt that in some sense, researchers have fully explored 
most of the traditional methods of measuring reusability: 
complexity, module size, interface characteristics, etc. 
Though the research community does currently recognize 
the importance of the problem domain with regard to 
reuse, few have actually linked the context in which a 
component is used to the true “usefulness” of that 
component. We believe reuse research will benefit 
greatly by focusing on the framework in which a 
component fits. So, if the reusability of a component 
depends on context, then reusability metrics need to 
include characteristics about the domain, the software 
architecture, and the associated environment.  

This paper discusses the use the software architecture 
descriptions as the 'context' of a software component. Our 
contextual metrics enable quantitative evaluation of the 
reusability of a software component based on its 
compliance to different elements of an architecture 
description. Reuse evaluations are also promoted by 
using these metrics to quantitatively evaluate the 
similarity between different components, measure a 
component’s coverage of functionality encoded in the 
architectural description and numerically track the 
evolution of a component in terms of system data and 
functionality. 

Section 2 of this paper gives a brief outline of related 
work done in the area of reusability measurement. 
Section 3 discusses the assumptions about the 
architectural 'context'. The proposed metrics are 
elaborated in Section 4. Section 5 briefly explains the use 
of these metrics and Section 6 concludes the paper. 
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2. Reuse Metric Approaches 
 

State of the art approaches for measuring reusability 
fall into two basic categories: empirical and qualitative. 
Empirical methods depend on objective data and can 
normally be calculated automatically and inexpensively 
[9] while the qualitative methods generally rely on 
subjective assessment of the software’s adherence to 
some guidelines or standards [9]. We draw from Jeff 
Poulin’s book [5] to navigate these spaces of reusability 
measurement. 

 
Empirical Methods: One of the most prominent 
approaches in this area is that by Prieto-Diaz and 
Freeman. They identified several program attributes - 
program size, program structure, program documentation, 
and reuse experience and proposed a faceted 
classification scheme for evaluating reusability based on 
these attributes [2]. Selby, on the other hand,  proposed a 
module oriented, statistical study of reusability 
characteristics of software [3]. The ESPIRIT-2 project 
called REBOOT (Reuse Based on Object Oriented 
Techniques) developed a taxonomy of reusability 
attributes with four reusability factors[4]. Caldiera and 
Basili [6] proposed a module oriented empirical approach 
in which they stated that basic reusability attributes 
depend on component costs, quality, and usefulness. 
Using ideas drawn from plagiarism detection, Hislop 
proposed a module-oriented approach for evaluating 
components in terms of function, form and similarity [7]. 
Boetticher and Eichmann [8] explored the viability of 
using neural networks to generate reusability rankings of 
software. Torres and Samadzadeh established a 
relationship between information theory metrics and 
reusability metrics and concluded that reuse  
information metrics might help in selecting the optimum 
case among different reuse candidates [10]. 
 
Qualitative Methods: Since defining an objective 
reusability metric often proves difficult, many 
organizations provide subjective (non-empirical) 
guidance on identifying and building reusable software 
components. Some of the prominent approaches in this 
area include Edwards [11], Hooper and Chester [12], 
Hollingsworth [13] and NATO [14]. These guidelines 
generally involve an intuitive description of what a 
reusable component ought to look like and range in 
content from general discussions about designing for 
reuse to rigorous design points [13, 15]. Usually module 
oriented, the guidelines often elaborate on formatting and 
style requirements and identifies general “reusability” 
attributes. Notable among the studies on “reusability” 
attributes is the work of Khairuddin and Key, who have 
examined these attributes to construct  a reusability model 

[16]. Another notable approach, the “3C Model,” [17] 
attempts to isolate the three design point specific 
dependencies of concept, content and context from each 
other during the implementation and design of a module.  
 
Summary: With the exception of the 3C Model, none of 
the approaches mentioned above include any software 
architecture or domain characteristics. They typically 
explore a component’s internal characteristics, which do 
not take into account the context (the requirements and 
architectural structure) in which the software component 
operates.  

The set of metrics presented here quantitatively 
evaluates a software component with respect to (1) 
compliance/adherence to those functional and data 
requirements captured in the architectural description, (2) 
compliance/adherence to the architecture structure, (3) 
the architecture compliance and coverage of the domain 
architectural descriptions and (4) the evolution of 
compliance and coverage over different component 
versions.  These quantitative, contextual evaluations 
position this research as fundamentally different from 
previous work done in this area.   
 
3. Context Assumptions 

 
The context of a software component is encoded in 

some form of system description. In 1980, Perry and 
Habermann [22] proposed a system description language 
and identified the rules for well-formed system 
compositions in terms of required and provided elements 
in configuration compositions. These compositions 
defined the context for evaluating the substitutability (or 
reuse) of one component for another. Since then we have 
seen the advent of architecture description languages 
(ADLs) to define basic system structures and establish 
constraints on those structures, their individual 
components and component interactions.  

In this research we use architecture descriptions to 
define the context for use and reuse.  Further, we make 
the following basic assumptions about these context 
descriptions in terms of their descriptive elements and 
format.  The description of each component in a 
architecture description consists of at least the following  
• Interface descriptions of the services that include 

associated input and output descriptions of the data 
and events, and the pre & post conditions; 

• Attributes descriptions; and  
• Behavioral descriptions.  

Interface descriptions of services are universally 
standard in almost all architecture description languages. 
Pre and Post conditions have been used in several formal 
approaches to architectural description e.g. Inscape [23]. 



Event based behavioral descriptions have gained in 
popularity with Luckham’s Rapide [24]. 

With the above basis for the context, this research can 
be extended to model driven architectures, product line 
architectures, reference architectures and different 
expressions of architectural styles with less complete 
descriptions.  

 On the assumption that we have an asset base from 
which we choose components to use in the architecture 
description to instantiate that architecture, we propose the 
model in Figure 1 of an asset component specification to 
capture the necessary information to be used in the 
contextual metrics.  We note that it consists of the same 
information we assume to be present in the architecture 
description. 
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Figure 1: Asset Component Specification 

 
Creating the asset base then requires a specification 

activity, referred to here as Registration, to establish the 
necessary information needed to measure the usability of 
a component in a particular architecture.  

The following steps detail the Registration process: 
Step 1: Select an architectural component from the 
architectural specification 
Step 2a: For the services provided by the architectural 
component, capture the services supported by the 
component being specified in the Provided Service 
Specification.  
For each service: 
• Capture the Input and Output Data & Events 

supported by the component for the service in the 
Data and Event Specification 

• Capture the Pre and Post Conditions supported by the 
component for the provided service in the Pre and 
Post Condition Specifications 

Step 2b: Capture the services required by the component 
in the Required Services Specification by following the 
steps similar to Step 2a 

Step 3: For the Attributes for the architectural component, 
capture the attributes supported by the component in the 
Attribute Specification 
Step 4: For the Behavioral Units of the architectural 
component, capture the behavioral units supported by 
component in the Behavioral Unit Specification in the 
form of quintuples (State, Trigger, Guard, Effects and 
Target). A component may be registered to a subset of the 
quintuples for each state transition. 
Step 5: Repeat Steps 1-4 for all architectural components 
in the architectural specification. 
 
4. Proposed Metrics 

 
In order for a software component to be reusable, its 

engineering characteristics need to be compatible with the 
envisioned target system in terms of its functional 
requirements. Though it may be possible to institute some 
well-defined approaches to engineer components that 
ensure reusability, there is still considerable amount of 
debate on this issue [18]. The set of metrics presented in 
this research, support a quantitative and objective 
evaluation of software components with respect to the 
context of the architecture description --- (i) the domain 
(functional and data) requirements contained in the 
architecture description and (ii) the architectural 
components. 

The metrics are categorized into Architecture 
Compliance Metrics and Component Characteristic 
Metrics. 
 
4.1 Architecture Compliance Metrics 
 

The Architecture Compliance Metrics measure the 
compliance of a software component to the constituent 
elements of the architecture description at different levels 
of granularity. The key metric is the Architectural 
Component Compliance Coefficient which measures the 
compliance of an asset component to a particular 
component in the architecture description, taking into 
account the (i) interfaces supported and required (ii) the 
data owned and (iii) behavior. For computing this metric, 
three other metrics are relevant – the Architectural 
Component Service Compliance Coefficient, the 
Architectural Component Attribute Compliance 
Coefficient and the Architectural Component Behavior 
Compliance Coefficient. This intuitively is analogous to 
our representation, thus providing objective measures for 
the three key aspects of any software component – the 
interfaces, the data, and the behavior. These compliance 
coefficients can be used to compare different software 
components for identifying a “best-fit” candidate when 



designing a system and attempting to reuse previously 
developed components.  

The metrics are discussed below. 
 
4.1.1 Architectural Component Service 
Compliance Coefficient. 

The Architectural Component Service Compliance 
Coefficient, ArchSvCoeff(d), is a measure of an asset  
component’s compliance to all the provided as well as the 
required services of a particular architectural component. 
It is computed as the average of the asset component’s 
compliance to each of the required architectural services 

Service level compliance indicates the extent to which 
an asset component is compliant with a given  functional 
requirement (service) defined in the architectural 
description. Six coefficients, namely the Input Data 
Compliance Coefficient, the Output Data Compliance 
Coefficient, the Input Event Compliance Coefficient, the 
Output Event Compliance Coefficient, the Pre-Conditions 
Compliance Coefficient and the Post-Conditions 
Compliance Coefficient are used to calculate the service 
level compliance. Therefore for each service, s, in an 
architectural component, the following coefficients are 
defined: 

 
Input and Output Data Compliance Coefficient 

The Input/Output Data Compliance Coefficients, 
IDCoeff(s)/ ODCoeff(s), are measures of how well an 
asset component registered to a given service s, in the 
architectural component, complies with the input /output 
data requirements for that service.  These coefficients are 
essentially the average of the ratios between the number 
of data elements to which the component is registered to 
the total number of data elements associated with a 
particular data entity, for all the input/output data entities. 
A data entity can be thought of as a data concept like 
‘Address’, while data elements are the sub-elements of 
that data concept like Street Address, City, State, Zip for 
our example. Thus 
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Where  
IDEn(s)/ ODEn(s):  Set of Input/Output Data Entities for 
service s. 
IDElregd(s, en)/ ODElregd(s, en): Set of Input/Output Data 
Elements for the entity en of service s, to which the 
component is registered. 
IDEl(s, en)/ODEl(s, en): Set of Input/Output Data 
Elements for the entity en of service s. 
en:  An entity belonging to the set IDEn(s)/ODEn(s) 
 

Input and Output Event Compliance Coefficient:  
The Input/Output Event Compliance Coefficient, 

IECoeff(s)/OECoeff(s), measures an asset component’s 
compliance to the input/output event requirements of a 
component service, s, in the architectural description. 
IECoeff(s)/ OECoeff(s), are the ratios between the total 
number of input/output events to which a component is 
registered to the total number of input/output events for 
service s. 
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Where 
( )regdIE s / ( )regdOE s : Set of Input/Output Events for 

service s, to which component is registered. 
( )IE s / ( )OE s : Set of Input/Output Events for service s. 
 

Pre and Post Condition Compliance Coefficient 
The Pre/Post Condition Compliance Coefficient, 

PreCondCoeff(s)/PostCondCoeff(s), measures an asset 
component’s compliance to the pre and post condition 
requirements of a component service, s, in the 
architectural description. PreCondCoeff(s)/ 
PostCondCoeff(s) are the ratio between the total number 
of pre/post conditions to which a component is registered 
to the total number of pre/post conditions for service s. 
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Where 
PreCondregd(s)/PostCondregd(s):  Set of Pre/Post 
Conditions for service s, to which component is 
registered. 
PreCond(s)/PostCond(s):   Set of Pre/Post Conditions for 
service s. 

Using the above six coefficients, for a service s, we 
obtain a value for the compliance of an asset component 
to the service, s.  
Service Compliance Coefficient: 

The Service Compliance Coefficient, SvCoeff(s) 
measures an asset component’s overall compliance to the 
architecture component’s service, taking into account its 
compliance to input and output data (IDCoeff & 
ODCoeff), input and output events (IECoeff & OECoeff) 
and pre and post conditions (PreCondCoeff and 
PostCondCoeff). The Service Compliance Coefficient 
also takes into account the relative importance of the 
particular service in the architecture by considering the 
number of other services that directly affects or is 
affected by the service under consideration. SvCoeff(s) is 



essentially the weighted average of the Input and Output 
Data Compliance Coefficient, the Input and Output Event 
Compliance coefficient and the Pre and Post Condition 
Compliance Coefficient. 
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       (7) 
Where 
IDDep(s)/ ODDep(s): Total number of services 
generating the input/output data entities required by 
service s. 
IEDep(s)/OEDep(s): Total number of services that 
generate/depend on all the trigger events of /from the 
service s. 
PreCondDep(s)/PostCondDep(s): Total number of 
services responsible for the set of pre/post conditions 

The Service Compliance Coefficient for each service 
is calculated for each service that is provided or required 
by the component being registered. Finally, we compute 
the Architectural Component Service Compliance 
Coefficient i.e. the service compliance for all services in 
the architectural component. 

 
Architectural Component Service Compliance 
Coefficient: 

The Architectural Component Service Compliance 
Coefficient, ArchSvCoeff(d), is a measure of an asset 
component’s compliance to the services (both provided 
and required) of a particular architectural component. It is 
the average of the Service Compliance Coefficient of all 
the services associated with a particular architectural 
component. 
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Where, 
ArchSv(d): Set of services (provided and required) for 
architectural component d. 

Off course we can calculate separate coefficients for 
provided and required service by setting ArchSv(d) to the 
set of provided services or required services only. 
 
4.1.2  Architectural Component Attribute Compliance 
Coefficient 

The Architectural Component Attribute Compliance 
Coefficient, ArchAttrCoeff(d), is a measure of an asset 
component’s compliance to all the data attributes of a 
particular architecture component. It is essentially the 
average of the components compliance to each of the 

attributes that it is registered to. ArchAttrCoeff(d) is 
measured in terms of the Data Attribute Compliance 
Coefficient or AttrCoeff(a). AttrCoeff(a) measures the 
extent to which an asset component is compliant with 
component data as specified in the architecture 
description. For each Data Attribute a in a architecture 
component, AttrCoeff(a) is calculated as: 
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Where 
( )regdAttr a : Set of elements in attribute a to which the 

component is registered. 
( )Attr a :      Set of all the elements of Attribute a. 

Finally we calculate, the ArchAttrCoeff(d) which is 
the average of the Data Attribute Compliance Coefficient 
of all the attributes associated with a particular 
architectural component. 
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Where 
ArchAttr(d): Set of Attributes in architecture component d 
 
4.1.3 Architectural Component Behaviour 
Compliance Coefficient 

The Architectural Component Behavior Compliance 
Coefficient measures the degree of compliance of an asset 
component to the behavior of an architectural component 
captured in the architecture descriptions. It is measured in 
terms of the Behavioral Unit Coefficient 
BehavUnitCoeff(bu), where BehavUnitCoeff(bu) is 
computed as below 
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Where 
BehavUnitElregd(bu): Set of behavioral unit elements the 
component is registered to. 
BehavUnitEl(bu): Set of elements in a particular 
behavioral unit, where an element is one of the quintuples 
– State, Trigger, Guard, Effects and Target. 

With the above, we calculate the Architecture 
Component  Behavior Compliance Coefficient 
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ArchBehavUnit(d): Set of Behavioral Units of 
architectural component d. 
 
4.1.4 Architectural Component Compliance 
Coefficient 

Now using the Service Compliance Metric evaluated 
for each service, the Data Attribute Compliance 



Coefficient is evaluated for each attribute and the 
Behavioral Compliance Coefficient, the notion of a 
component’s overall compliance to a architectural 
component can be calculated. The Architectural 
Component Compliance Coefficient, ArchCoeff(d), 
measures the asset component’s overall compliance to an 
architectural component. 
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                                                            (13) 
As mentioned previously, these coefficients measure 

an asset component’s compliance to various elements of 
the architectural description. Therefore, if component A 
has a SvCoeff of 0.5 for a certain service in the domain 
and component B has a SvCoeff of 0.75 for the same 
service, it can be inferred that asset component B is more 
compliant to the architecture component and should be 
preferred over asset component A for that particular 
service implementation. On the same lines, if the goal is 
to implement a particular architectural component as a 
whole complying with the specified boundaries of 
functionality and data set forth by the Architectural 
Component, then a component with a higher ArchCoeff 
(d) should be preferred.  
 
4.2 Component Characteristic Metrics 
 

While the Architecture Compliance Metrics calculated 
the compliance of an asset component to the various 
elements of the architectural description individually, 
these metrics did not capture the characteristics of a 
particular component as a whole. The Component 
Characteristic metrics address this aspect. These metrics 
evaluate characteristics of an asset component with 
respect to component functionality, component data and 
the component as a whole. The Component Characteristic 
metrics measure the compliance and coverage of an asset 
component with respect to the component data 
(characterized by all the attributes in the architectural 
description) and component functionality (characterized 
by all the services in the architectural description).  

The Component Characteristic Metrics are of three 
types (i) The Proximity Metrics, (ii) The Compliance 
Metrics & (iii) The Coverage Metrics. These metrics are 
discussed in the following sub-sections and they leverage 
the Architecture Compliance metrics derived in the 
previous section. 
 
4.2.1 Proximity Metrics 

The Proximity metrics are defined to measure 
“closeness” of two versions of an asset component with 
respect to a) component functionality i.e. 
Interfaces/Services b) component data i.e. Attributes. In 
essence, these coefficients indicate the proximity of two 
asset versions with respect to the architectural 
description. The utility of these metrics lies in the fact 
that they give an insight into how a component has 
evolved in terms of domain data and domain functional 
requirements. 

Though the proximity metrics have been defined to 
measure “closeness” between two versions of the same 
asset component, the idea can be extended to measure 
proximity between two different components as well. 

 
Functional Proximity Metrics  

The Functional Proximity Metrics leverage the 
Functional Model (the collection of services contained in 
the architectural description) to measure the similarity 
between two components with regard to the functional 
requirements the components satisfy.  

Let FC be the Functional Model Compliance Matrix 
representing the compliance of different versions of a 
component, tc,  to the services of the architectural 
description. Thus the matrix FC for two versions of 
component tc can be represented as 

FC=
1 1 1

2 2 2

1 2

v 1 v 2 v1

v 1 v 2 v2

                                                          

SvCoeff ( ) SvCoeff ( ) ... SvCoeff ( )
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n

n

n

s s s

s s sv

s s sv

⎡ ⎤
⎢ ⎥
⎣ ⎦

                     

                                                                    (14) 
Where 
v1 and v2 represents the two versions of the component, 
tc.  
s1 …sn represents the list of services from a particular 
architecture description. 
SvCoeffv1(sn), SvCoeffv2(sn)  represents the Service 
Compliance Coefficient of version v1 and v2 of the 
Component with the set of Services, sn, in the 
architectural description. 

Now, the Proximity Matrix with respect to the domain 
functionality, PMF, is defined as 
PMF = [FC][FC]T                            
Where [FC]T denotes the transpose of the matrix FC. 

The element PMFi,j represents the proximity of 
versions i and version j with respect to the Functional 
Model. The matrix PMF is not normalized. We use the 
Euclidean Vector Norm to normalize the matrix PMF. 
The normalized PMF restricts the value of the element 
PMFi,j  between zero and one. The formalized notation 
for deriving a normalized PMF using the Euclidean 
Vector norm is given below. 

The Functional Model Compliance Matrix for the 
software component, tc, can be written as: 



FC = [svt] v = 1 ….V, t = 1…T                           
Where  svt   represents the Service Compliance 
Coefficient for version, v, of  the Component, tc, for 
service, s, in the architectural description. V represents 
the total number of versions of tc and T represents the 
total number of services in the architectural description. 
The Service Compliance vector, sv, is represented as  
sv = [sv,1    sv,2      sv,3       ……….sv,T  ]. 
We know from the Euclidean Vector Norm that 

 || sv || 2  =  
1/ 2

2
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Using the Functional Model Compliance matrix, FC, it 
is now possible to define the proximity of two versions, 
say (u, v) of a component. The FC can be evaluated as the 
cosine of the angle formed by vectors sv  and su that can 

be computed as the dot product of 
2|| ||

v

v

s
s

 and  
2|| ||

u

u

s
s

, 

respectively. Thus the Normalized Proximity Matrix, 
PMFN, can be represented as 
PMFN =  [fuv] u = 1 ….V, v = 1…V           (15) 

where fuv    =       
1 v 2 u 2|| s || || s ||

F
vt ut

t

s s
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⎜ ⎟⎜ ⎟
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After normalization, we are assured that uv0  f   1≤ ≤ . 
At the boundaries, the following interpretations can be 
made: 
fuv = 1: The versions u and v are exactly similar in terms 
of the Functional Model. 
fuv = 0: There is no similarity in the functional model 
coverage of the two versions of the component. In other 
words they satisfy non-overlapping sets of services in the 
architectural description. 

The higher the value of fuv the more similar the two 
versions of the component are and lower the value, the 
more dissimilar the two versions are with respect to 
functional requirements. 
 
Data Proximity Metrics 

The Data Proximity Metrics leverage the Data Model 
(the collection of data attributes contained within the 
architectural description) to measure the similarity 
between two components with regard to the data 
requirements the components satisfy.  The treatment used 
for deriving the proximity metrics with respect to the 
Data Model is similar to the one used for deriving the 
proximity metrics with respect to the Functional Model. 
The only difference lies in the fact that the Data Model 
Compliance matrix, DC,  is represented by 

DC     =       

1 1 1

2 2 2

1 2

v 1 v 2 v1

v 1 v 2 v2
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Where 
 v1 and  v2 represent the versions of the Component, tc.  
a1 …an represents the list of attributes for a particular 
architectural description. 
AttrCoeffv1(an) represents the Attribute Compliance 
Coefficient of version v1 of the component with the 
attribute an in the architectural description. 

All other derivations and implications are exactly the 
same as the proximity metrics for the Functional Model. 
 
4.2.2 Component Compliance Metrics 

These metrics measure the compliance of an asset 
component to the architectural description as a whole. 
The Compliance Metrics are of two types – the Static 
Compliance metrics and the Compliance Evolution 
metrics. The Static Compliance metrics measure the 
degree of compliance of a component to the System Data 
Model and the System Functional Model. The 
Compliance Evolution metrics measure the percentage 
change of a component from one version to another in 
terms of system data and functionality. 
 
Static Compliance Metrics 

The Static Compliance metrics are termed ‘static’ as 
they measure the compliance of a given version of a 
component with respect to the Data and Functional 
Model.  

The Data Model Compliance Index, DCmI(v), for a 
version of a component measures the compliance to the 
complete Data Model of the System. It is calculated as 

DCmI(v)     =   
v

a  RegAttr(v)

C(a) . AttrCoeff (a)

| RegAttr(v) | 

∈

∑
,     (17) 

while the Functional Model Compliance Index 

FCmI(v)  =              

v

s  RegSvc(v)

C(s) . SvCoeff (s)

| RegSvc(v) | 

∈

∑
          (18) 

 
Where 
RegAttr(v)/ RegSvc(v): Set of Attributes/Services in the 
architectural description to which the version v of the 
component is registered. 
C(a)/ C(s): Criticality of the Attribute/Service a/s in the 
domain. 



AttrCoeffv(a) SvCoeffv(s): Attribute/Service Compliance 
Coefficient for Attribute/Service a/s for version v of the 
component. 

The Criticality of the attribute/service is taken into 
account to reflect the relative importance in the System.  
If information regarding the criticality of data or services 
does not exist or is not specified, C(s) and C(a) should be 
specified as 1. 

The System Model Compliance Index, which is the 
measure of a component’s overall compliance to the 
domain requirements as represented in the architectural 
description.  It is calculated as 

SysCmI(v)  = 
( ) + ( )

2

DCmI v FCmI v
    (19) 

In a situation where a system integrator has two 
components to evaluate for satisfying a given 
functionality, he/she should select a component with the 
higher value of SysCmI (v) if overall domain compliance 
is desired. 

 
Compliance Evolution Metrics 

The Compliance Evolution metrics for a component 
are intended to measure the percentage change in the 
component’s compliance to the domain from one version 
to another. 

The Data Model Compliance Evolution Index, DCmE 
(vnew, vbase ), for a component, captures the percentage 
change in the compliance to the Data Model from one 
version to another and is calculated as 

DCmE (vnew, vbase ) =
( ) - D ( )

 x 100
( )

new base

base

DCmI v CmI v

DCmI v
  (20) 

Similarly, the Functional Model Compliance Evolution 
Index 

FCmE (vnew, vbase ) = ( ) - ( )
x 100

( )
new base

base

FCmI v FCmI v

FCmI v
 .(21) 

The rollup of data and functional evolution, the 
System Model Compliance Evolution Index, 
SysCmE(vnew, vbase), for a component, captures the 
percentage change in the component’s compliance to the 
overall domain requirements from one version to another 
and is calculated as in below. 

SysCmE (vnew, vbase ) =   

100
)(

)()( X
vSysCmI

vSysCmIvSysCmI
base

basenew −        (22) 

In a typical software system, we are likely to see high 
positive values for compliance evolution indices, which 

would indicate that the new version of the component is 
more compliant to the domain. A negative value would 
indicate that the new component has lower compliance to 
the domain, which in most general cases is not desirable. 

 
4.2.3 Component Coverage Metrics 

The Component Coverage Metrics measure how much 
of the Data and the Functional Model is covered by a 
component. Similar to the Compliance metrics, the 
Coverage metrics are of 2 types (i) The Static Coverage 
Metrics and (ii) The Coverage Evolution Metrics. These 
metrics are explained below. 

 
Static Coverage Metrics 

The Static Coverage Metrics measure the coverage of 
the Functional & Data Model by a particular version of a 
software component. These are very simple indices which 
capture how much of a domain is covered by a 
component and is intended to facilitate decision making 
with respect to the scope of individual components for a 
system deployment. 
The Data Model Coverage Index,  

DCvI(v) =   | Re ( ) |

| ( ) |

gAttr v

RAAttr ra
    (23) 

while the Functional Model Coverage Index,  

FCvI(v) = 
| Re ( ) |

| ( ) |

gSvc v

RASvc ra
     (24) 

Where 
RegAttr(v)/ RegSvc(v): Set of attributes/services in the 
architectural description to which the version v of the 
component is registered.  
RAAttr(ra)/ RASvc(ra): Set of all the attributes in the 
architectural description, ra. 
 

The overall System model Coverage Index with 
respect to both functions and data is calculated as  

SysCvI(v)  = ( )  ( )

2

DCvI v FCvI v+
   (25)      

The Static Coverage metrics support the first level 
decision making for short listing of potential asset 
components for a given set of functionality. After the 
shortlist is made, the component compliance metrics, 
explained in the previous section, should be used for 
identifying the most suitable candidate. 

 
Coverage Evolution Metrics 

The Coverage Evolution Metrics measures the 
percentage change in the coverage of the Functional & 
Data Model as well as the overall System Model as a 
component evolves from one version to another. These 



metrics are intended to facilitate system evolution 
decisions.  

The Data Model Coverage Evolution Index measures 
the change in the coverage of the Data Model as the 
component evolves from version vbase to vnew and is 
calculated as: 

DCvE (vnew, vbase ) = ( ) - DCv ( )
 x 100

( )
new base

base

DCvI v I v

DCvI v
  (26) 

The Functional Model Coverage Evolution Index, 
which measures the change in coverage of the Functional 
Model from version vbase to vnew  is computed as: 

FCvE (vnew, vbase ) = ( ) - FCv ( )
 x 100

( )
new base

base

FCvI v I v

FCvI v
  (27) 

Similar to the Static Compliance Metrics, the overall 
System Model Coverage Evolution Index, which 
measures the percentage change in the overall coverage 
of the domain requirements between two versions of the 
component is calculated as 
SysCvE(vnew,vbase)= 

100
)(

)()( X
vSysCvI

vSysCvIvSysCvI
base

basenew −        (28) 

                                                                             
The Coverage Evolution indices help track the 

functional change in a component from one version to the 
next. Off course these metrics are equally applicable for 
comparing different applications, when used in the 
correct context. 
 
5. Application of the Metrics 
 

Reusable components should ideally have high values 
for the Compliance and Coverage metrics. Target 
threshold values, which may come from Program 
Managers or System Integrators, could be used as design 
drivers when a reusable component is being built from 
scratch. The goal in such a case should be to aim for 

(i) High compliance to architecture functionality, 
(ii) High compliance to architecture data, and 
(iii) High compliance to architecture component 

description. 
For asset components, the Architecture Compliance 

metrics provide a useful mechanism for evaluating reuse 
potential of these components and help in decision-
making about suitability of reuse candidates. 

These metrics were applied in a sample University 
Registration System  where the architectural description 
consisted of 45 services and 22 data entities distributed 
over 15 architectural components. The returned results 
were quite satisfactory. Detailed elaboration of the 
experiment cannot be provided in this paper due to 

constraints of space. We present a single result for 
demonstrating the concept.  

Service Compliance Coefficient for two reusable 
components TEX1.0 and ROSEv1.0 were calculated. The 
Service Compliance Coefficient (SvCoeff) of TEX v1.0 
was 0.84 while that of ROSE v1.0 was 0.63 (Table 1). 
The values are calculated using formula (7). Thus for the 
given service “Add a Class”, TEX 1.0 was selected over 
ROSE v1.0 as it satisfied the functional requirement 
better.  

Table 1: Calculation of Service Compliance 

 
By considering the Service Compliance Coefficient of 

similar components, component developers would be able 
to identify whether their component is competitive 
enough (i.e. competitive against other components for the 
domain) for a particular service implementation and 
therefore take necessary steps to increase the reuse 
potential of their components. 

It’s worth mentioning in this context that we are 
currently in the process of building a tool that would 
automate the registration process and calculate the 
metrics for architectural evaluation. 
 
6. Conclusion 
 

The contextual metrics presented here provide a 
mechanism for a quantitative evaluation of software 
component reuse in the context of architecture 
requirements (functional and data) and architecture 
structure.  We leverage the requirements represented 
within an architectural description to provide the context 

System Architecture:  Student Registration 
Arch. Component Name: Registration System 
Service Name: Add a class 
 TEX v1.0 ROSE v1.0 
Input Data Compliance 
Coefficient – IDCoeff(s) 

0.94 0.89 

Input Data Dependency – 
IDDep(s) 

1 1 

Output Data Compliance 
Coefficient – ODCoeff(s) 

0.75 0.45 

Output Data Dependency – 
ODDep(s) 

1 1 

Input Event Compliance 
Coefficient - IECoeff(s) 

1 0.5 

Input Event Dependency – 
IEDep(s) 

1 1 

Output Event Compliance 
Coefficient - IECoeff(s) 

0.67 0.67 

Output Event Dependency – 
IEDep(s) 

1 1 

   
Service Compliance Metric – 
SvCoeff(s) 

0.84 0.63 



for an asset component to evaluate the compliance of 
these components to the architectural description, and to 
assess the similarity between components, the 
component’s coverage of the architectural description, as 
well as numerically tracking the evolution of a 
component in terms of the architectural description. Not 
only do our metrics provide objective measures in the 
context of the architecture, they also enable quantitative 
decision-making regarding the behavior of components. 
Our reusability assessment thus goes beyond simple 
interface matching and helps system integrators explore 
behavioral characteristics of components as well.  

These metrics are ‘generic metrics’ as the 
measurement indices are not constrained by the nature of 
the components being evaluated and can be applied to 
any component. Defining “generic metrics” has been one 
of the recognized goals of the reuse research community. 
These metrics provide simple yet realistic, quantitative 
measure of reuse potential from a domain perspective and 
help evaluate the benefits of selecting one component 
over another at design time.  They are intuitive in nature, 
are consistent, reproducible, and can be used to provide 
meaningful insight for various system stakeholders. 
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