

Predicting Architectural Styles from Component Specifications:

Extended Abstract

Sutirtha Bhattacharya
PTD Automation
Intel Corporation

Hillsboro, OR – 97124
sutirtha.bhattacharya@intel.com

Dewayne E. Perry
Empirical Software Engineering Lab (ESEL)

ECE, The University of Texas at Austin
Austin, TX 78712

perry@ece.utexas.edu

Abstract∗
Software Product Lines (SPL), Component Based Software

Engineering (CBSE) and Commercial Off The Shelf (COTS)
components provide a rich supporting base for creating software
architectures. Further, they promise significant improvements
in the quality of software configurations that can be composed
from pre-built components. Software architectural styles
provide a way for achieving a desired coherence for such
component-based architectures. This is because the different
architectural styles enforce different quality attributes for a
system. If the architectural style of an emergent system could be
predicted in advance, a System Integrator could make necessary
changes to ensure that the quality attributes dictated by the
system requirements were satisfied before the actual system was
deployed and tested. In this paper we propose a model for
predicting architectural styles based on use cases that need to be
met by a system configuration. Moreover, our technique can be
used to determine stylistic conformance and hence indicate the
presence or absence of architectural drift

Keywords
Component Based Software Engineering, Architectural Style,
System Composition, Reuse

1. Introduction and Scope

Software architecture styles represent a cogent form of
codification [1, 2, 3] of critical aspects to which an architecture
is expected to conform. They differ from patterns in that
patterns are the result of a discovery process, not a constraint
process. Of course, patterns may play an important role in the
creation and specification of a style: commonly occurring
patterns provide a useful basis for codification. Part of the
confusion comes from the fact that styles can be viewed both

∗ This research is supported in part by NSF CISE grant IIS-0438967.
Please note that any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation

prescriptively (i.e., as a complex constraint that must be
satisfied) and descriptively (i.e., as a description of what exists).

In 1997 Shaw and Clements proposed a feature-based
classification of architectural styles [3]. They proposed that
different architectural styles can be discriminated among each
other by analyzing the following feature categories.
 Constituent Parts i.e. the components and connectors
 Control Issues i.e. the flow of control among components
 Data Issues i.e. details on how data is processed
 Control/Data Interaction i.e. the relation between control

and data
 Type of Reasoning: Analysis techniques applicable to the

style
Since different architectural styles support distinct sets of

quality attributes, the benefit of evaluating components for
suitability to an architectural style is obvious, as the quality
attributes for a system are often dictated by the system
requirements. The ability to determine the architectural style for
a system configuration will help us predict whether the desired
quality attributes will be satisfied by the system prior to actual
deployment.

In this research we propose a model for documenting
component specifications and demonstrate how we can reason
over the specifications to determine the emergent architectural
style a-priori. The first step in the process is the feature category
analysis to ensure that our specification model captures the
relevant information that will be used for Style prediction. This
is followed by the application of the style prediction algorithm.

2. Approach

The approach for the proposed research is outlined in this
section. We start with the assumption that there exists a
component repository in which software components relevant
for a particular domain have been specified using our
architectural specification model. A System Integrator (human)
identifies a deployment use-case (made up of a list of services)
that needs to be satisfied using pre-built components. For
identifying the configuration of components for satisfying the
use case, the System Integrator queries the repository for the
available components. The reasoning proposed will be done on
the set of components returned by the component repository.
The envisioned reasoning capabilities will facilitate i)

mailto:sutirtha.bhattacharya@intel.com

determining whether the set of components returned by the
repository conform to any specific architectural style, and ii)
identifying a set of components that conform to a desired
architectural style and hence support the desired set of quality
attributes.

Our specification model captures an architecture in terms
of the architectural elements. These elements are essentially the
components and connectors that enable functional partitioning
as well as introduce the notion of object orientation. Our model
enforces the separation of the functional specs from the non
functional specs. The functional specifications are captured in
terms of the Interface Spec (captures the interface information
for the services provided by the architectural element), the
Attribute Specs (captures the domain data supported) and the
Behavioral Specs (captures the state transitions supported). The
non-functional specs are captured in terms of the Quality
Attribute constraints and the Deployment constraints

Using the specification model, we analyze the various
feature categories proposed by Shaw and Clements to ensure the
information needed for architectural style reasoning is
comprehended. We start with the constituent elements of a
configuration. This is followed by the Control Issues, the Data
Issues and finally the Control/Data interactions.

Based on the feature category attributes the emergent
architectural style is predicted, using the Shaw Clements
classification. The prediction is based on the values of the
feature category attributes determined during the feature
category analysis.

The step-by-step process for predicting the emergent
architectural style is outlined below:
Step 1: The System Integrator specifies a use case/scenario for
which a software configuration needs to be built
Step 2: For each service in the use case, we identify the best fit
candidate from the component repository and build the Base
Component List.
Step 3: For each component in the Base Component List, we
make a note of its Component Type Attribute. If all the
components are not of the same type, we consider the
component type of the set of components to be the one that is
most common.
Step 4: For each component in the Base Component List, we
make a note of the Connector Type attribute. If all the
connectors are not of the same type, we consider the connector
type of the configuration of components to be the one that is
most common.
Step 5: We determine the Control Topology of the set of
components by developing the Control Flow List
Step 6: We determine the Control Synchronicity of the
configuration of the components
Step 7: The Data Topology of the configuration of components
is determined by developing the Data Flow List
Step 8: The Data Continuity of the configuration is determined
Step 9: We determine whether the Control and Data Topologies
are isomorphic
Step 10: From the feature category attributes derived in Steps 3
to Step 9, we reference the Shaw Clements classification to

determine the Architectural Style. If no clear conclusion can be
drawn, we try to determine the most probable architectural style
by considering the maximum number of feature category
attributes that can be used in making a prediction that is
consistent with the classification

3. Conclusion

We propose an approach for reasoning about architectural
styles using component specification and a use case scenario
which the system integrator desires to satisfy by using a
configuration of components. Using this approach, the system
integrator will be able to evaluate several deployment options
and the associated implications to the quality attributes before
the system has been built. This could prove to be an invaluable
way of assessing the final system behavior a-priori.

Given that we can determine the emerging stylistic
characteristics of a configuration (whether global or “regional”)
and determine how close it comes to satisfying a particular
architectural style, we can use our approach to determine the
conformance of that configuration to particular style. This will
be particularly useful during the evolution of a system to detect
either architectural drift, or even architectural erosion [1, 7].

We envision this research to evolve, resulting in tools that
would make the System Integrator’s job easier and more
efficient.

4. References

[1] Perry, D. E., Wolf, A. L., “Foundations for the Study of

Software Architectures”, ACM Software Engineering
Notes, 17, 4, October 1992, 40-52

[2] Abowd, G., Allen, R., Garlan, G., “Using style to understand
descriptions of software architecture”, Proceedings of the
1st ACM SIGSOFT symposium on Foundations of
software engineering, 1993, 9-20

[3] Shaw, M., Clements, P., “A Field Guide to Boxology:
Preliminary Classification of Architectural Styles for
Software Systems”, Proceedings of the 21st International
Computer Software and Applications Conference, 1997, 6-
13

 [4] Habermann, A. N., Perry, D. E., “Well Formed System
Composition. Carnegie-Mellon University, Technical
Report CMU-CS-80-117. March 1980

 [5] Bhattacharya, S. “Specification and Evaluation of
Technology Components to Enhance Reuse,” Masters
Thesis, The University of Texas at Austin, July 2000

[6] Bhattacharya, S., Perry, D. E.,. "Contextual Reusability
Metrics for Event-Based Architectures", The 4th
International Symposium on Experimental Software
Engineering, November 2005, Australia

 [7] Perry, D. E., Wolf, A. L., “Software Architecture”,
August1989.
http://www.ece.utexas.edu/~perry/work/papers/swa89.pdf

	Predicting Architectural Styles from Component Specification
	Sutirtha Bhattacharya
	PTD Automation
	Intel Corporation
	Hillsboro, OR – 97124
	sutirtha.bhattacharya@intel.com
	Dewayne E. Perry
	Austin, TX 78712
	Abstract(

