
Why is it so hard to �nd Feedback Control
in Software Processes?

(Invited Presentation)

Meir M. Lehman

Department of Computing
Imperial College

London SW7 2BZ, UK

mml@doc.ic.ac.uk

Dewayne E. Perry

Software Production Research
AT&T Bell Laboratories

Murray Hill NJ 07974 USA

dep@research.att.com

Wladyslaw M. Turski

Institute of Informatics
Warsaw University

02-097 Warsaw, Poland

wmt@mimuw.edu.pl

Abstract

Early data on the phenomenology of software sys-
tem evolution suggest that such evolution involves
and is, to some extent, governed by feedback. This
feedback may take the form of information fed back
to individuals or groups as a form of learning from
experience or may take the form of observation and
data that are used to control some aspect of the
process. For the moment, we shall put the former
to one side and concentrate only on feedback to
explicit control mechanisms.

Initial investigations, using a basic model for
feedback control, have exposed a variety of reasons
why software processes are not amenable to classi-
cal feedback control: software processes are design,
not production processes; control-directed process
changes tend to be step functions, not regulatory
ones, and are often as creative as the processes
they control; and system development and evolu-
tion processes are still immature with little theory
to guide the design and application of regulation
control mechanisms. Despite these limitations, we
have found promising examples of feedback control
and, on the basis of more recent phenomenological
evidence, believe this area of research to be critically
important and vital to understanding and control-
ling the development and evolution of software sys-
tems and improvement of software processes.

Keywords Feedback control, software evolution,
software processes, process models, process control,
process feedback

Proceedings of the 19th Australasian Computer

Science Conference, Melbourne, Australia, Jan-

uary 31{February 2 1996.

1 Introduction

Software development and evolution processes have
become an signi�cant area of software engineering
and software engineering research. Among top-
ics of importance are process formalisms, process
support, process assessment, process architecture
and process improvement. One of the underlying
motivations for the emergence of this relatively new
direction in research and practice is the need to
move the development and evolution of software
systems from a craft venture to an engineering one.
An expected consequence of this move is that the
methods and techniques by which software systems
are built and evolved will be open to scrutiny and
evaluation by the community rather than consid-
ered to be secrets passed amongst the initiated.

Given that the functionality of systems we build
(and hence the systems themselves) can be exceed-
ingly complex, that the processes we use to build
and evolve these systems are complex, that the
organizational structures that provide their devel-
opment and operation context are equally complex,
and that there is undoubtedly extensive feedback in
the processes used and organization that executes
them, it is surprising that feedback and feedback
control have been so little investigated in the con-
text of software systems evolution.

Despite the fact that the role and the impact of
feedback has received little attention as a research
topic, it has long been recognized as a signi�cant
factor in software processes. It was, for example,
referred to in passing by several people at the soft-
ware engineering workshop in Garmisch [10] and
is also discussed briey in Lehman's Programming
Process report [7].

Sequence No.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Size

Figure 1: The Growth of OS/360.

Lehman and Belady [1] [9] provide one of the
earliest examples of feedback control at work in the
evolution of OS/360. Figure 1 depicts the growth
of OS/360 in terms of modules over a period of
26 releases. The cyclic pattern evident in the plot
from release 1 through release 20 is characteristic
of feedback systems. They observed

... the ripple is typical of a self stabi-
lizing process with positive and negative
feedback loops. From a long-range point
of view the rate of system growth is self-
regulatory, despite the fact that many dif-
ferent causes control the selection of work
implemented in each release, with budgets
varying, increasing numbers of users re-
porting faults or desiring new capability,
varyingmanagement attitudes towards sys-
tem enhancement, changing release inter-
vals and improving methods ...

It is in this context of evolutionary software
development that we have for some time studied
feedback and feedback control, a study for which
the FEAST 1 project has provided a formal frame-
work for this past two years [8] [3] [4] [5]. In this
paper, we �rst examine the de�nitions and nature
of feedback and control. We then present a research
manifesto and feedback control model as the initial
basis for our investigations. On the basis of this
groundwork, we consider various facets of feedback

1FEAST stands for Feedback, Evolution, And Software

Technology.

and control in the context of software evolution
processes: what feedback control means in design
processes as opposed to production processes; what
feedback control means when it leads to a change
in processes rather than in their regulation; and
�nally, the contrast between feedback inuence and
feedback control in relatively immature processes.
We then summarize our current results and discuss
where to go from here.

2 Feedback and Control

As the term feedback is used in a wide variety of
contexts, it is worthwhile to take a look at the basic
meanings of the word. Webster's New Collegiate
Dictionary de�nes \feedback" as follows:

feedback: 1: the return to the input of a
part of the output of a machine, system,
or process (as for producing changes in
an electronic circuit that improve perfor-
mance or in an automatic control device
that provides self-corrective action) 2 a:

the partial reversion of the e�ects of a pro-
cess to its source or to a preceding stage b:
the return to a point of origin of evaluative
or corrective information about an action
or process < student � was solicited to
help revise the curriculum >< we wel-
come ... � from our readers - brickbats as
well as bouquets - Johns Hopkins Mag.>;
also : the information so transmitted

The mere return of information, even if it is
evaluative or corrective, does not guarantee that
it will have any e�ect. To have an e�ect, this
information must be somehow used, i.e. it must
produce a change in something. And, while there
are a variety of ways in which feedback may have an
e�ect, we are here interested in one speci�c means
of producing such e�ects | namely, feedback con-
trol.

The verb control also has two principal (fami-
lies of) meanings. Once more we quote from the
Webster's New Collegiate Dictionary:

1: to check, test, or verify by evidence or
experiments 2a: to exercise restraining or
directing inuence over: REGULATE b:

to have power over: RULE

These two meanings are often used interchange-
ably in everyday speech. However, when applied to
software evolution processes, the activities denoted
by \control{1" are quite di�erent from those de-
noted by \control-2" 2. The confusion is ampli�ed
(or, perhaps, generated) by the fact that a single
person (or a single group) often performs both ac-
tions, \control{1" and \control{2" with respect to
a productive activity. In addition, it may happen
that the same person or group performs \control{
2" over several activities, particularly when \control-
2b" is meant.

Nevertheless, a precondition for any sensible ap-
proach to a scienti�c and technological treatment
of software evolution processes is that the meanings
of \control" are disentangled. From now on we will
use check for \control{1" and regulate (or possibly
rule, if it is needed) for \control{2". Thus checking
is distinct from regulating.

In a disciplined work environment, all produc-
tive work actions are checked: do action until

check-successful. This qualitative function of
checking is a part of production, not part of control.
It guarantees an established level of completeness
or quality of the production.

Regulation, on the other hand, is the control of
the production process on the basis of the produc-
tion results. It is this meaning of control that we
use in the combination feedback control. The whole
idea of applying feedback control to software evolu-
tion processes rests on the assumptions that there
is a stream of similar production tasks and that
regulation of the production processes is required
to maintain an ideal production state.

2The distinction between \control{2a" and \control{2b",

although important in many contexts, is less fundamental

in our considerations as|usually|one has to have power

over something if one is to exercise restraining or directing

inuence over it. With some hesitation we may accept that

in the context of software evolution processes \control{2a"

implies \control{2b".

There are two factors that e�ect the mainte-
nance of this ideal production state: instability
and random events. It is di�cult to deny that
software evolution processes are often unstable, or
that random events occur in and impact these pro-
cesses. Thus, many software development processes
require feedback control to contain the tendency
towards instability and to control the consequences
of randomness.

In contrast to checking, regulating may have
one of the following e�ects as a result of evaluating
feedback.

� Change the processing | that is, change var-
ious parameters that govern the production
process

� Change the process | that is, change the pro-
cess structure itself rather the parameters that
control the processes. There are two ways in
which this change may be achieved:

{ statically | use an alternative part of the
production process

{ dynamically | change the existing pro-
cess or create a new process

3 Technology vs Sociology

Given our de�nitions of feedback and control, there
are still a wide variety of feedback control phe-
nomena that we want to exclude from our inves-
tigations. One such general category is that of
learning as an example of feedback control. In
this case, feedback is the information returned to
a person placed at the point of origin, who absorbs
the information and via an act of human learning
modi�es his or her future behavior { for example,
the way this person manages whatever happens to
be his or her activity domain.

This interpretation is acceptable for the soci-
ology of software evolutions processes. It can be a
part of a manager's or developer's education: \thou
shalt pay (more) attention to the feedback you are
getting"; or even more aggressively: \thou shalt
seek more feedback about the actions you manage".
It can be elaborated by supplying a list of sources
from which the feedback is to be considered or
sought categorized into \important", \vital", and
\irrelevant" classes. Suitable case studies may be
conducted, yielding instances of the bene�ts that
accrue when one heeds the feedback message and
of the disasters that follow when the feedback in-
formation is neglected. This, no doubt, can (and
will) be a useful part of education and training for
both managers and developers alike.

However, this type of feedback and control can-
not easily be interpreted and modeled as a techno-
logical view of software evolution processes. The

point is that the evaluation and control machin-
ery is all in the human brain. Moreover, even if
we accept that feedback provides the stimulus and
basis for learning, we still face a dilemma: either
we explain what the appropriate reactions are that
need to be learned, or we leave that to intuition or
creativity.

In the former case, i.e. when it is ultimately
known what are the recommended, bene�cial, prof-
itable reactions to a particular combination of feed-
back signals received, we do have explicit control
machinery (\when you get too many error reports
coming from the customers strengthen the qual-
ity control", \when you are late with delivery, cut
down on the most time-consuming activity" etc.)

In the latter case (invoking intuition) such ma-
chinery is not readily apparent, but it is hard to see
what advice can be given to a manager or developer
as the (necessary) second part of the admonition to
pay more attention to the feedback. A rational per-
son will almost certainly ask: What am I supposed
to do when I collect all this information fed back to
me? How can I act on it? Unless we are prepared to
answer \use your head" or some similarly profound
platitude, we are inextricably bound to construct
control machinery.

Whatever other kinds of feedback are consid-
ered, if they are to be used for improving the soft-
ware process they must be turned into explicit con-
trol mechanisms. Thus, we concentrate, at least
initially, on feedback control as a technological rather
than a sociological endeavor.

4 Manifesto and Model

As a prelude to our investigations (in the FEAST
project), we laid down a manifesto de�ning our
goals, identifying supporting postulates, describing
a basic model and enunciating our research hypoth-
esis. One of the advantages of this approach is
that the manifesto provides the primary inputs to
de�ning a project and developing a workplan.

We de�ne two general goals for our investiga-
tions.

� To produce speci�c recommendations, guide-
lines, methods and tools for software evolution
process improvement

� To contribute to a science of software process
and software evolution

These goals are to be pursued in the context of
process systems that satisfy a set of requirements
about their structure and composition. That is,
the FEAST project is limited to process systems
that implement the evolution of software systems
and that satisfy the following postulates.

� These systems have rich networks of feedback

� Some of the feedbacks stabilize characteristics
in these systems

� Some feedbacks are controllable

The basis for our investigations is a process model
of feedback and control. This model consists of a
process element (PE) which applies resources (R)
to transform inputs (I) into outputs (O). If one of
the destinations of the output is a controller (C),
where output is fed back into the process element,
we obtain a general controlled feedback loop (as in
Figure 2). We term this general controlled feedback
loop a process unit (PU). Process elements can
contain process units.

Our hypothesis is that a process or process sys-
tem that satis�es the postulates above can be use-
fully decomposed into a manageable number of pro-
cess units.

A number of important issues arise in the in-
vestigation of this hypothesis using the model we
have proposed. The �rst of these issues is that
of how to model software evolution processes |
in particular, what do we model and what is the
basic unit of modeling. There are two general ap-
proaches we might use: one is to model people and
organizations, the other is to model what people
and organizations do | that is, their activities.
Choosing people and organizations would lead to
a decomposition like an organizational chart of a
company. For di�erent projects executed by the
same company, the charts need not be identical,
even when the projects are concurrent. While these
organizational charts are useful for some purposes,
we think they are not useful here.

We propose, instead, to model the activities in
software evolution processes. A process element in
our model, then, represents an activity performed
in evolving a software system. Moreover, this choice
represents a focus on the design of the processes
and their activities, not their implementation in
terms of people, tools, environments and organiza-
tions. It should be emphasized that the resulting
model may not map readily to a traditional orga-
nizational structure | in particular, the control
aspects in the model are associated with the ele-
ments they control and not with the parts of the
organization which may execute them.

The second issue is that of process element de-
composition. Given that activities are both the
basic building block and the decomposable build-
ing block, how do we structure software evolution
processes recursively using our model. A process
element may be composed of both process elements
and process units. It is not necessary that a pro-
ductive action have feedback control. It may sim-
ply be a activity that produces something necessary
for the overall product of the evolution processes.
The activities may be composed sequentially or in

PE

C

R

OI

PU

Figure 2: Process Feedback Control Model.

parallel into a larger unit with or without a con-
troller. The internal structure of a process element
then may look like a graph with multiple paths
starting with the initial input and resulting in the
�nal output. How the decomposition is arrived at
and how far the modeling e�ort is taken | that is,
how many levels of recursion one has | is a matter
of design choice.

Given that one can recursively decompose the
process element of a process unit into a combina-
tion of process elements and process units (each
with their own controller), the third issue is that
of how far a controller can extend its control. Ob-
viously, the controller may a�ect the parameters
that it regulates. These parameters may a�ect the
control of the checking in various process elements
(such as how many errors are allowed to be found
before rewriting is required) or they may a�ect the
control of the subordinate process units (changing
their parameters and thus indirectly changing their
range of control). Secondly, the controller may
e�ect a change in the activity structure by selecting
a di�erent, but existing, path through the process
element. And �nally, the controller maymodify the
internal structure of the process element it controls.
These may range from simple changes to the pro-
cess elements and their interconnections to radical
redesigns of the entire activity.

A critical question at this point is the extent
to which a controller may e�ect its control | how
far into the recursive structure can a controller see?
Since it is our intent to keep the model as simple as
possible and introduce complexity only as it is clear
that one cannot do otherwise, we limit that span of
control to only one level of nesting. That does not,
however, preclude the controller from establishing

changes in the controllers it regulates to cause them
to carry out desired changes beyond its limits.

The fourth issue is the form and frequency of
the output from the process element that is used as
input to the controller. A classical feedback control
approach would suggest that the output from the
process element is discrete and separated in time by
whatever delay exists due to the arrival of input and
the time to transform that input into output. For
sub-elements nested deeply in the hierarchy, this
time delay may not be signi�cant, but at the top
level of a process that evolves a very large software
system the delay may be on the order of months or
even a year or two.

In this latter case, the delay means that the
controller will be able to e�ect its regulation only
infrequently. In practical terms, however, we see
control exercised on a much more frequent basis,
especially by such organizations as project and pro-
cess management. Moreover, we certainly see in
our current processes and activities the production
of project, process and product information which
can be considered output of a sort | though dif-
ferent from that of the product itself. If we permit
this sort of output, we get something more akin to
continuous output that can be assessed and eval-
uated by the process element controller and used
to regulate the process in a more timely manner
during, rather than between, the transformation of
input to output.

This more continuous stream approach raises a
side-issue: what determines the extent of visibility
of these project, process and product data? We
certainly want to avoid an information explosion
because that is as poor a data modeling technique
as having too many lines of control. In the end, it

is the controller that determines what information
is needed if its job of regulation is to be e�ectively
performed. Thus, the information output (other
than the product itself) is precisely that required
by the controller as necessary to properly regulate
its process elements and its subelements.

A number of extensions to our model, that may
be allowed if we �nd that we cannot properly model
our evolution processes without them, suggest them-
selves at this point.

� Allow a controller to be recursively decompos-
able into a collection of subunits that together
de�ne the controller.

� Allow arbitrary input to the controller where
now the only input is that which is produced
by the process element and, indirectly, that
from the ruling controller.

As with many software engineering analytic tools,
the very act of decomposing a process in a partic-
ular fashion may yield substantial dividends, quite
apart from any bene�ts that may accrue from ap-
plying subsequent steps. A very important kind
of dividend is the listing of a regulators' admissi-
ble actions and required inputs. Quite likely one
will discover how badly de�ned are the regulators'
prerogatives, how arbitrarily they are distributed
between various regulators, and how little justi�-
cation there is for allowing some regulators to do
things that are just as groundlessly denied others.
If this hunch proves correct, a very concrete im-
provement to many software evolution processes
would be instantly available: the uni�cation of reg-
ulators scope under similar (or even more so under
identical) stimuli. Translated into shop-oor terms,
one would advise giving similar powers to people
who control similar activities. This piece of advice
is of course trivial; the di�erence is that with our
decomposition in hand we can esh out the similar
parts of the advice.

The desired result of a fully realized multi-level
control model is the identi�cation of controllers,
their settings and their predicted results so that
the well-regulated processes so modeled reach a
steady-state | that is, reach a state of stability
and predictability.

5 Inuence vs Control

On the basis of the OS/360 phenomenology [9]and
our model, we undertook various process modeling
exercises to explore the various issues in feedback
and control. The general result was a paucity of
feedback control examples. The most frequently
encountered kind of control is that where control
changes or redesigns the controlled process element.
Examples of changing process or control element
parameters | that is of regulation in the classical

sense | were almost impossible to �nd. We did,
however, �nd anecdotal evidence of several exam-
ples of this type of classical regulation. We discuss
these examples in the next section.

Despite the di�culty in identifying predictable
control mechanisms, it was clear that there is a
wide variety of feedback e�ects | that is, feedback
control that is implicit and unpredictable rather
than explicit and well-de�ned.

We o�er a number of reasons for this state of
a�airs:

� �rst, the �elds of software engineering (in gen-
eral) and process engineering (in particular)
are relatively immature;

� second, there may well be feedback overload
in which the various feedback paths interact
in unknown ways and hinder the understand-
ing of individual feedback and control mecha-
nisms;

� third, process changes as a result of control
tend to be step functions, not regulation; and

� fourth, classical feedback control mechanisms
are generally applied to production. Their ap-
plicability to design processes such as software
production and evolution processes have not
been widely studied.

5.1 Immaturity

As a �eld, software engineering is relatively young
and as a sub�eld of software engineering, process
engineering is very young. One might characterize
most software evolution processes as in the \chitty,
chitty, bang, bang" stage | that is, the entire
enterprise is just barely held together and all the
e�ort goes just keep the enterprise aoat. As such,
the evolution processes are workable, but only just,
and all the time is spent tuning and repairing the
enterprise with no resources left for more formal
feedback and control mechanisms to be put in place.

While the previous description may be some-
what of a caricature, it is undeniable that we have
little theory for software evolution processes, pro-
cess improvement, or even of process systems and
their architectures [11] [2]. Because of this lack of
theory, we do not know what controls are available,
and if we do, we do not know (or know very little
of) what their settings are and what e�ects they
have.

Clearly, we need research to establish appropri-
ate theories from which to derive necessary control
mechanisms and experimentation to establish their
settings and e�ects.

5.2 Feedback Overload

A basic result in linear theory may provide an ex-
planation of why there is a lack of readily discernible

\control knobs" in software evolution processes 3.
While these processes are not linear systems, the
analogy is a reasonable initial approximation.

If a systems' open-loop transfer function (that
is, with no feedback) is A and a fraction of the
system output b is fed back (negatively) to the in-
put, the the system's closed-loop transfer function
is A* = A/(1+bA). Thus, in a system where there
is a signi�cant amount of feedback, A* approaches
1 and the transfer function tends to be merely a
function of b more or less independent of A.

While this makes it di�cult to �nd the control
knobs in the evolution processes, it does have a pos-
sible and very interesting side e�ect: it is possible
for intrinsically poor software processes to produce
good products because the actual process execution
is dominated by the feedback (the set of bs) and
not the basic process. This is observed in practice
in software development and evolution processes
when a high degree of corrective feedback is sup-
plied by, for example, capable and experienced lead
developers or project managers.

5.3 Step Functions vs Regulation

One of the means of regulation was that of chang-
ing or redesigning the controlled processes. It is
this category of control that we found most often
in our explorations. Almost uniformly, however,
these process changes represented step functions
rather than control knobs by which a process could
be regulated | that is, they change the process
(often signi�cantly) by improving one or more of
its aspects, not by providing a means of regulation.

Watts Humphrey's Personal Software Process
(PSP) [6] provides one such example. PSP is intro-
duced in a series of steps where each step concen-
trates on a particular aspect of the personal pro-
cess. A fundamental part of the process is measure-
ment of key process factors which provide feedback
to the person executing the process. The key to
the personal process is personal defect management
in which the yield measure is the most important:
yield is the percentage of defects found and �xed
before compilation and testing.

In teaching PSP, the students are given a set
of 10 programs which are developed sequentially as
di�erent parts of PSP are introduced. Design and
code reviews are introduced just prior to exercise
7. This introduction represents the major change
in the evolution of PSP from introduction to a fully
eshed out process. While there is a slight increase
in yield between exercise 1 and exercise 6, there is a
signi�cant jump after the introduction of reviews,
causing the average yield to change from about 8%
to about 50% and thus representing a signi�cant

3This explanation was suggested by Ray O�en, Mac-

quarie University, in an informal discussion about the

problems of �nding feedback control in software processes.

process improvement. After that through the end
of the exercises, there again is some slight improve-
ment.

This introduction of design and code reviews
represents a step function that improves the pro-
cess; it does not represent a turnable knob that
enables one to regulate PSP.

Still, this use of step functions is not so di�erent
from what happens in other �elds { for example,
economics | and we see progress in these �elds by
applying principles of feedback control.

5.4 Design vs Production

While we often talk about software production as
design and implementation where implementation
refers principally to code production, it is a key
insight to understanding software development and
evolution processes that the entire design and cod-
ing processes are actually design processes; they are
not manufacturing or production processes. Code
represents simultaneously the lowest level of design
and the beginning of construction. Building a soft-
ware system is like building a new unique bridge.
The notions of control are as di�cult to express
there as they are in software processes. How does
one apply feedback to a creative process?

Where, then, is the production part of software
processes? It is in the compilation and linkage of
the component parts { that is, in the production of
an executable version of the system. This produc-
tion part is, however, entirely automated and not
very interesting froma feedback control standpoint.

As an analogy to software evolution, consider
the evolution of an particular brand of automobile.
That evolution is not in the production line. For
individual instances of cars (the ones we own), evo-
lution takes place in the repair shop. But, evolution
of a particular car line takes place in the design
laboratory. The governor aspect of control is not
applicable at the design level and feedback at the
production level is orthogonal to design and evolu-
tion. The controllers are changed for assembly and
production as a result of design changes. However,
evolution of the product line cannot be explained
by its controllers, nor reduced to its controllers.

This analysis suggests that the manufacturing
and production process with all the feedback con-
trollers that go along with it are of little direct in-
terest to studying the software process. Instead of
production and manufacturing we have invention.
Phenomenological data, however, suggests other-
wise and this is something that requires further
investigation

A �rst insight indicates that, for example, feed-
back plays a signi�cant role in the coding and test-
ing part of the processes. One reason for this is that
coding and testing are where we are closest to the
non-creative aspects of the process. Moreover, at

a certain distance of abstraction, we can view the
design and coding processes as the transformation
of input speci�cations to output products. It is this
latter view, of course, that suggests the utility of
feedback control principles.

6 Examples of Feedback Control

As mentioned above, the most common kind of
feedback control we found in our explorations was
that which led to changes in the process. Votta and
Zajac [12] describe this type of example in their
study of design process waivers. In the evolution
of their large-scale, real-time system, features are
the unit of work. These range in size from several
lines of code to multiple thousands of lines of code.
The same design process is used for all features.
However, for the smaller ones, waivers may be sub-
mitted to omit various parts of the process, which
while appropriate for large features are inappropri-
ate for smaller ones.

Votta and Zajac acted as the control element of
the process and collected a large set of waivers over
a period of time. After collecting these waivers (as
outputs from the design process), they evaluated
the various requests and assessed their merits. The
result was a control action to de�ne three separate
paths of design dependent on the estimated size of
the feature | each class of features would have a
design process appropriately scaled to their needs
as determined by their size.

In this example, the controller changed the pro-
cess by introducing several extra paths through the
internal process elements and process units that are
governed by a size switch. While it is an example
of feedback control, the control itself is as creative
in its e�ects as the design process it regulates.

In our search for the more classical regulating
control, we have anecdotal evidence of one such
control in the use of code reviews. While we do
not have documentation, it is a case that is entirely
plausible. The regulation works as follows: if there
are too many errors in the code units being pro-
duced, extra code reviews are introduced to reduce
the number of errors; if time is critical and the
number of errors is su�ciently low, code reviews are
removed from the process to speed up the process
at the expense of an increase in errors.

We are currently exploring this case further to
document it and to determine its utility as a regu-
lation form of control.

7 Summary and Future Research

Our work over the past year has been primarily
a philosophical or intellectual exploration of the
problems of applying feedback control principles
to software evolution processes. This exploration
has been based on our combined industrial and

research experience 4 and that of the various par-
ticipants in the FEAST Workshops. As we have
noted in the discussions in the preceding sections,
we have phenomenological evidence that classical
feedback control is at work in the evolution of soft-
ware systems and that there is a signi�cant amount
of feedback present in these processes. While it is
apparent that these various feedback paths have
a variety of e�ects, our explorations have yielded
little that can be counted as predictable control.
It will require extensive scrutiny and modeling of
current industrial processes to determine the actual
impact of feedback and control.

Meanwhile, developers continue to build and
evolve software systems. They continue to make
progress in their understanding of those processes
though there is little record of the their investiga-
tion of feedback paths and its impact.

Our current research agenda is focused on ex-
ploiting practical, real world experience as the basis
for understanding and delineating feedback con-
trol in software evolution processes: noticing cor-
relations among feedback and e�ects, �nding pat-
terns in feedback phenomena, and performing en-
gineering and scienti�c experimentation to deter-
mine both useful control e�ects and their underly-
ing mechanisms.

We have a three pronged approach: collecting
and analysing system evolution phenomena, apply-
ing systems dynamics modeling, and experimenting
with feedback controls.

The phenomenology of system evolution was one
of the starting points for our research, a phenomenol-
ogy of a 1960's operating system. There are ques-
tions as to how relevant that phenomenology is
today: perhaps it was the result of the speci�c
application, or perhaps the result of the speci�c
environment or organization. However, our intu-
ition is that it is the phenomena of large systems'
evolution and independent of the time, application
and environment. The very �rst data on a 1990s
system that we have just begun to study appears
to con�rm the earlier observations and support our
intuitions.

To understand the complexity of feedback paths,
control and their interactions, we plan to create
systems dynamics models of several currently used
evolution processes. In this way we will be able to
validate the models with current project data and
gain insights into the various feedback phenomena
that are at work in building and evolving software
systems. Our industrial partners are the source of
these processes and data.

4Each of the authors has had extensive system devel-

opment experience in industrial and commercial settings

as well as academic and industrial research experience in

software and process engineering.

Insights that we have gained into feedback con-
trol phenomena will be con�rmed and explored fur-
ther by means of both engineering and scienti�c
experiments. In this way, we expect to determine
the identi�able impact of feedback controls and de-
termine their range of e�ects.

Thus we hope to extend the science of soft-
ware evolution and develop methods, techniques
and tools to aid both system evolution and process
improvement.

Acknowledgements

We wish to thank the various participants in the
FEAST workshops and our industrial partners for
their insights, questions and discussions on the var-
ious aspects of feedback and control phenomena.

References

[1] L. A. Belady and M. M. Lehman. An Intro-
duction to Program Growth Dynamics, pages
503{511. Academic Press, 1972.

[2] Ashok Dandekar David C. Carr and De-
wayne E. Perry. Experiments in process inter-
face descriptions, visualizations and analyses.
In Software Process Technology: EWSPT'95,
pages 119{137, Noordwijkerhout, The Nether-
lands, April 1995.

[3] FEAST Project. Preprints: FEAST Work-
shop I, Imperial College, London UK, 16-17
June 1994.

[4] FEAST Project. Preprints: FEAST Work-
shop II, Imperial College, London UK, 24-25
October 1994.

[5] FEAST Project. Preprints: FEAST Work-
shop III, Imperial College, London UK, 28
February - 1 March 1995.

[6] Watts Humphrey. The power of personal
data. Technical report, Software Engineering
Institute, 1995.

[7] M. M. Lehman. The Programming Process,
pages 39{83, 1969. In [9].

[8] M. M. Lehman. Software process improvement
| the way forward. In Proceedings CAiSE
95, pages 1{11, LNCS, Springer Verlag, June
1995.

[9] M. M. Lehman and L. Belady. Program
Evolution { Processes of Software Change.
Academic Press, 1985.

[10] P. Nauer and B. Randall. Software Engi-
neering { Report on a Conference, Sponsored
by the NATO Science Committee. Scienti�c
A�airs Division, NATO, Brussells, Garmisch
1968.

[11] Dewayne E. Perry. Issues in process architec-
ture. In Proceedings of the 9th International
Software Process Workshop, pages 138{140,
Airlie VA, October 1994.

[12] L. G. Votta and M. L. Zajac. Design process
improvement case study using process waiver
data. In Software Engineering { ESEC'95,
pages 44{58, Sitges, Spain, September 1995.

