
Parametric and provisioning approaches are again obviously useful for various

kinds of generic descriptions and provide the most direct means of deriving their

product architecture from the product line architectures.

8 Summary

I have considered a variety of useful ways of `genericizing' architectural descrip-

tions (or prescriptions). I claim that a generic architecture is a fundamental

requirement for a product line and that each of these approaches is needed as a

means of de�ning some important elements in such a generic architecture.

This article was processed using the LaTEX macro package with LLNCS style



6 A Service Oriented Architecture as a Generic

Architecture

One of the typical kinds of problems found in developing such large and com-

plex systems such as telephone switches is the need to provision the various

products with di�erent features. Provisioning these systems is not the kind of

thing that can be done with parametric or variation independent approaches.

One can always of course do it with either styles or under{constrained descrip-

tions, but that does not help much if one wants these provisioned features to be

architectural features.

Thus an approach to describing a product line architecture is one in which

the various architectural services that may be provisioned are de�ned as part

of the architecture and are then selected in an instantiation process to de�ne a

particular product. One advantage of this approach is that the possibilities are

explicit in a more tangible way than in a parametric approach. Moreover, if done

properly, the architectural dependencies of these services are also made explicit

and the implications of choices are thus more explicit.

As with the parametric approach, instantiation is accomplished with well{

understood technology. Analysis and planning both can be done relative to the

product line description with the added advantage that the planning of a speci�c

product can be derived from the product line planning itself via the selection

mechanism of provisioning.

As long as the evolution of the product line architecture is done via the ad-

dition of new services, existing product architectures will remain valid instances

of the new product line architecture.

While this goes a long way towards a useful approach for provisioned prod-

ucts, it is likely to be insu�cient in itself for a complete product line speci�cation.

7 Putting The Pieces Together

I think it is clear at this point that a comprehensive approach to de�ning a

generic architecture for a product line requires all of these di�erent ways of

addressing various product line issues.

Styles are certainly needed for aspects of the product line that are orthogonal

to the speci�c component structure. For example, one may want to de�ne a style

for initialization or fault handling that must be satis�ed by all the components

in a product line to ensure appropriate cross{product use.

Under{constrained descriptions always provide a wider degree of 
exibility

than over{constrained ones. Clearly some aspects of a product line will be best

served by this approach where large degrees of design and implementation free-

dom are useful to respond to such things as changes in technology.

The variation{independent architecture is certainly needed where you want

to delay such considerations as platform or distribution until build time or even

execution time.



involved. Evolution of the product line architecture implies evolution of the

product architectures.

Because of the identity of the product and product lines architectures, issues

of analysis and planning at the product line level apply to the product level.

The downside of this approach is that it may not be possible to isolate all the

variations in this way. Certain properties such as distribution, fault{tolerance,

etc may be amenable to this, but di�ering functionality may not be.

Another negative aspect is the standard speci�cation problem of talking

about what is not there.

5 A Parametric Architecture as a Generic Architecture

A standard approach for generalizing is that of parametric abstraction. The

parameterized component is then applicable across a wide range of arguments (in

programming languages de�ned typically by types). The limits of applicability

depend on the constraints that are checked on those arguments. That partly

depends on the type system and what is allowed as a �rst class parameter types.

For example, in Ada generics, the range of types usable as parameters is larger

than for functions and procedures. In macro languages there are typically no

constraints at all. But then there is no guaranteed substitution safety either.

The utility of this approach is the same as for packages and operations: the

architecture speci�cation de�nes a family of possible instantiations and for which

the properties of the product line can be ensured for the various instantiations.

The variations required for each possible product in the line are well{de�ned

and known. Moreover, the instantiation of a speci�c product architecture is a

well{understood technology and the instance can be derived automatically from

the argumented product line description.

Here again, analysis and planning are doable at the product line rather than

the product level.

Evolution of the parameters may seriously a�ect individual product archi-

tectures. If the evolution is limited to broading the types of the parameters,

or perhaps upward{compatibly extending the parameters, then the individual

product architectures should remain valid.

There are two limiting factors. First the kinds of the parameters allowed may

seriously a�ect how well the generic architecture serves to cover the necessary

products. If the kinds of �rst class objects are too limited, then one may not have

su�cient descriptive power to satisfactorily describe the product line. Second is

the question of whether parameterization covers all the kinds of variation that

one might need to have among the products in a product line. We have seen

examples above that suggest that parametric approaches are not su�cient in

and of themselves.



but one which has marrower bounds) and one will have to analyze the product

architecture to ensure its conformance to the product line constraints.

This approach seems to be an appropriate one to use if the primary di�erence

among the products is something like performance and in which the function-

ality is primarily the same. On the negative side, extending the product line is

a signi�cantly more constraining task. Unless you evolve the product line ar-

chitecture, the new products must be de�nable within the current constraints.

In evolving the under{constrained product line architecture, care must be taken

in its expansion not to inadvertently nullify current products as constituents of

the line through the addition of further components or constraints. Constraint

relaxation, of course, does not cause such a problem.

4 A Variance{Free Architecture as a Generic

Architecture

Again the di�erences between this and the preceding ones are subtle. Here the

architecture is not under{constrained. It is instead a fully described architecture

but one in which the variances among the products are not considered to archi-

tecturally important { that is, the product di�erences are an issue of design and

implementation, not an issue of architecture.

This approach is useful when your product line spans a signi�cant range of

options with respect to a particular aspect. One such example is that of whether

the system is centralized or distributed. If the products range from simple cen-

tralized systems through to complex multi{processor and distributed processor

systems, then this characteristic of the system might well be one that you want

to bury in the infrastructure and not have as an important architectural issue.

In this case, you might want to have a distribution independent architecture.

Distribution then becomes an implementation or even a administrative issue,

but not an architectural issue.

What is interesting in this case is that there is a signi�cant implication for

the implementation to support this kind of variance independence. To make the

architecture independent of issues of distribution implies a class of architectural

components which will support that independence.

Another example might be platform independence. Here again, there is an

implication about what the structure of part of the architecture must be in order

to bury the actual platform speci�c aspects in the design and implementation

rather than have them visible at the architectural level.

There is a signi�cant appeal in this approach. Analysis and planning can be

done at the product line architecture level. If the right product characteristics

are made independent of the architecture, then new products can be derived

from the product line architecture with relative ease merely by providing the

appropriate implementation speci�c components in the design and coding phase

in such a way that they conform to the product line architecture. The individ-

ual product architecture is the product line architecture; there is no derivation



speci�cation. One primary advantage is that new products can be added to

the line with ease as long as they conform to the basic product line stylistic

constraints. This provides a wide degree of latitude in the the various products

and what they provide relative to the core essence of the product line.

One of the negative side e�ects of this approach is the amount of work needed

to re�ne the product line style into a particular product architecture. With

the intent of a style as capturing only the essential architectural aspects of the

product line, those aspects must be extended and added to in order to create

in individual product architecture. As such the product architecture must be

analyzed for conformity to the product line architecture.

As a result of this lack of completeness other aspects of architectural based

development su�er as well. For example, analysis of the product line architecture

will, of necessity, be less comprehensive. Project planning will be similarly less

comprehensive at the product line level and the majority of planning work will

be delayed until after a complete product architecture has been extended from

the core style.

Further care must be taken in evolving the product line's architectural style

so as not to invalidate existing product architectures. With each change to the

product line style, the individually derived product architectures will have to be

re{analyzed to ensure that the product architectures remain conforming to the

style.

On the whole there are better uses of styles for product line architectures

than de�ning the generic product line architecture itself. For example, one could

de�ne a set of styles de�ning such things as initialization, fault recovery, etc that

all the various components in the architecture must adhere to.

3 An Under{Constrained Architecture as a Generic

Architecture

The di�erence between an architectural style and an under{constrained archi-

tecture is a subtle one. The di�erence is fundamentally the di�erence in the com-

pleteness of the architectural description. A style is meant to focus on certainly

critical features and isolate them from non{essential and non{stylistic features.

There is no requirement for completeness of an architectural description in any

way.

With an under{constrained architecture the idea is to capture the product

line as completely as possible but in such a way that the variations are not ruled

out by overly constraining the architecture. The variance is within the con�nes of

the architectural constraints, not within the aspects that have not been de�ned.

This approach goes a long way towards solving the weaknesses of the stylistic

approach in terms of analysis and planning at the product line level. Further it is

much easier to create a product architecture from the product line architecture.

However, it is still not a simple matter to produce the product architecture from

the product line architecture (it is still primarily a creative process as with styles



Generic Architecture Descriptions

for Product Lines

Dewayne E. Perry

Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 USA

dep@research.bell-labs.com, www.bell-labs/com/usr/dep/

1 Introduction

Two of the fundamental needs in de�ning an architecture for a product line are

{ to be able to generalize or abstract from the individual products to capture

the important aspects of the product line and

{ to be able to instantiate an individual product architecture from the product

line architecture.

In other words, having a product line implies having a generic architecture from

which the individual product architectures can be derived in some manner.

There are a number of di�erent ways in which one might go about de�ning the

product line architecture so that this desired level of genericity can be achieved.

Five possible ways of doing this are

{ use a software architecture style,

{ use an under{constrained architecture description,

{ de�ne a variance{free architecture,

{ use parametric descriptions with varying binding times, and

{ use a service oriented description for selective provisioning.

In the end, I think you will need all of these for a systematic and complete generic

product line architecture. I will discuss each of these in turn and delineate their

strengths and weaknesses.

2 A Style as a Generic Architecture

There is a certain intuitive appeal in using a product line speci�c architectural

style as the generic architecture for a product line. It would capture the essential

characteristics of the product line while ignoring the variations and leave them

to be supplied as needed in the actual product architecture. These essential

characteristics would encompass the necessary components that each instance

must have, the basic minimum interactions that each instance must have and

the basic constraints on these components and interactions.

The utility of a style description is that it represents the minimalist approach

to software architecture in general and product line architecture in speci�c. Only

the critical aspects of the product line need to be considered in the architectural


