
A Product Line Architecture for a Network

Product

Dewayne E. Perry

Electrical and Computer Engineering

The University of Texas at Austin

Austin TX 78712 USA

+1.512.471.2050

perry@ece.utexas.edu

www.ece.utexas.edu/~perry/

ABSTRACT

Given a set of related (and existing) network products, the goal of this ar-

chitectural exercise was to de�ne a generic architecture that was su�cient to

encompass existing and future products in such a way as to satisfy the following

two requirements: 1) represent the range of products from single board, central-

ized systems to multiple board, distributed systems; and 2) support dynamic

recon�gurability.

We �rst describe the basic system abstractions and the typical organization

for these kinds of projects. We then describe our generic architecture and show

how these two requirements have been met. Our approach using late binding,

re
ection, indirection and location transparency combines the two requirements

neatly into an interdependent solution { though they could be easily separated

into independent ones.

We then address the ubiquitous problem of how to deal with multiple di-

mensions of organization. In many types of systems there are several competing

ways in which the system might be organized. We show how architectural styles

can be an e�ective mechanism for dealing with such issues as initialization and

exception handling in a uniform way across the system components.

Finally, we summarize the lessons learned from this experience.

0.1 Keywords

Software Architecture Case Study, Dynamic Recon�guration, Distribution-Free

Architecture, Architecture Styles, Multiple Dimensions of Organization

1 Introduction

This study represents a snapshot in the process of constructing a generic archi-

tecture for a product line of network communications equipment. The intent of

the project was to create the software architecture for the next generation of

Switch
Fabric

Originating
 Port

Destination
 Port

Fig. 1. Basic Abstraction: Connection. A connection consists of an originating

port connected via a switch fabric to a destination port.

products in this domain using the existing set of products as the basis for that

e�ort.

The project began in an unusual way: the software architecture team came

to research looking for help with their project. They had the domain expertise

for the network product as well as experience as architects and system builders. I

had experience as a software designer and architect in a variety of domains (but

not this one) as well as research expertise in software architecture in general and

product line architectures in particular. The result was a fruitful collaboration

that lasted about 9 months.

Several caveats are in order before we proceed to discuss the issues and their

solutions.

{ First, we do not describe the complete architecture. Instead, we concentrate

only on the critical issues relevant to the product line and the implications

of these issues.

{ Second, we present only enough of the domain speci�c architecture to provide

an appropriate context for the part of the architecture and the issues we focus

on.

{ Third, we address only three architectural issues and describe several archi-

tectural techniques that solve these issues in interesting ways.

{ Fourth, we do not here discuss issues of analysis such as performance. The

architects already did that very well and, as a researcher, that was not where

my expertise was applicable (it was in the areas of basic abstractions and

generic descriptions). The primary performance issue related to the discus-

sion below was about the e�ciency of current commercially ORBs | the

one selected appeared to satisfy the required constraints.

{ Fifth and �nally, we do not provide a full evaluation of the architecture (for

example, how well did it work in the end) primarily because, for a variety of

reasons, the project was not completed. We do, however, o�er the positive

consensus of the project architects and their satisfaction with the resulting

solutions we discuss below.

2

Controller
Connections:
 Lines
 Networks
 Switches
 Craft/Debug

Connection
 Manager

Connection
 Services

Fig. 2. Basic Hardware/Software System: consists of four logical elements: con-

nections, controllers, connection manager and connection services.

We �rst provide the context for the study (the product line domain, the

current and desired states of the product line, and a basic view of the products).

We then explore the implications of the selected system goals and what is needed

at the architectural level to satisfy these goals. On this basis, we the describe

our architectural solutions and the motivation behind our choices. Finally, we

summarize what we have done and lessons we learned in the process.

2 Product Domain

The product line consists of network communication products that are hard-

ware event-driven, real-time embedded systems. They have high reliability and

integrity constraints and as such must be fault-tolerant and fault-recoverable.

Since they must operate in a variety of physical environments, they are hard-

ened as well.

These products are located somewhere between the house and the network

switch. They may sit on the side of a building or on some other outside loca-

tion (for example, a telephone pole), or partly there and partly near a network

switch, depending on how complicated the product is (that is, depending on the

complexity of the services provided and the number of network lines handled).

The current state of the products in this product line is that each one is built

to a customer's speci�cations. Evolution of these products consists of building

both the hardware and software for new con�gurations.

Central to a satisfactory architecture are the fundamental domain abstrac-

tions. They provide the basic organizing principles. Here the key abstraction is

that of a connection. A connection consists of an originating communications

line port connected through a switch fabric (appropriate for the type of network

service provided) to a destination port. The connections range from static ones

(which once made remain in existence until the lines or devices attached to the

ports are removed) to dynamic ones (which range from simple to very complex

connections that vary in the duration of their existence) | see Figure 1.

3

Service Layer
(Connection Services)

Network Layer
(Connection Manager)

Equipment Layer
(Controller and Connections)

Fig. 3. Typical Domain-Speci�c Architecture: a structure of three layers consis-

tent with the standard network model.

The typical system structure for these products (see Figure 2) consists of a

set of connections such as communication lines, switches, other network connec-

tions, and craft and debugging interfaces. These devices have various appropriate

controllers that are handled by a connection manager which establishes and re-

moves connections according to hardware control events and coordinates the

services required to support the connections.

Figure 3 shows a typical architecture for such network communication prod-

ucts layered into service, network and equipment layers. Within each layer are

the appropriate components for the functionality relevant to that layer.

3 Basic System Goals

The basic requirements for the product line architecture we seek are:

{ Requirement 1. To cover the large set of diverse product instances that cur-

rently exist and that may be desired in the future
{ Requirement 2. To support dynamic recon�guration so that the products

existing in the �eld can evolve as demands change for new and di�erent

kinds of communication.

Thus the desired state of the product line is that products can be recon�g-

ured as needed with as little disruption as possible (but not requiring continuous

service). For the hardware, this entails common interfaces for the various com-

munication devices and plug compatible components. This part of the project

was addressed by the hardware designers and architects. For the software, this

entails a generic architecture for the complete set of products and software sup-

port for dynamic recon�guration of the system. This part is what we addressed.

The �rst question then is how do we create a generic architecture that covers

the entire range of products in the product line | that is, how do we satisfy re-

quirement 1? These products range from simple connection systems that consist

4

SW Dev NC Assets

Archive

RP

CC

Check CC

CMin

RM

RG

Fig. 4. Recon�guration: Recon�guration Generation is shown in detail: new archi-

tectural con�guration (NC), check consistency and completeness (Check CC), minimize

con�guration (CMin), recon�guration package (RP), and current con�guration (CC) ;

Recon�guration Management (RM) is shown in detail in �gure 5.

of a processor, associated controllers and devices, to complex connection systems

that consist of multiple processors, associated controllers and devices which may

be distributed over several locations.

The main question is how do we handle this range of variability in component

placement and interaction? If we address the issue of distribution at the archi-

tectural level, then that implies that distribution is a characteristic of all the

instances. What then do we do with simpler systems? A separate architecture

for each di�erent class of system defeats the goal of a single generic architecture

for the entire product line.

One answer to this problem of variability is to create a distribution inde-

pendent architecture [4] (requirement 1.1) and thus bury the handling of the

distribution issues down into the design and implementation layers of the sys-

tem. In this way, the distribution of components is not an architectural issue.

However, this decision does have signi�cant implications at the architectural

level about how the issues of distribution are to be solved. First, the system

needs a model of itself that can be used by the appropriate components that

must deal with issues of distribution. For example, the component handling

system commands and requests must know where the components are located

in order to schedule and invoke them. Thus, second, we need a command broker

that provides location transparent communication, that is con�gurable, that is

priority based and that is small and fast. So not only do we get a view of

the architecture where distribution is not an issue, we get a component view of

5

SM

SD

RM

Fig. 5. Recon�guration Components: System Model (SM), System Data (SD),

and Recon�guration Manager (RM). The dotted line separates the domain speci�c part

from the recon�guration and distribution-independence parts of the architecture.

communication where distribution is not an issue either. Finally, the components

need to be location independent in order to be useful across the entire range of

products.

To satisfy requirement 2 for dynamic recon�guration, it is necessary only to

minimize down time. We do not need to provide continuous service. However,

we need to be able to recon�gure the system in situ in any number of ways from

merely replacing line cards to adding signi�cantly to the size and complexity

of a system (for example, changing a simple system into a complex distributed

one) in the hardware and from changing connection types to adding and deleting

services in the software.

As with the issue of distribution, recon�gurability requires a model of the

system and its resources, and obviously, a recon�guration manager that directs

the entire recon�guration process both systematically and reliably. For this to

work properly, the components have to have certain properties akin to location

independence for a distribution-free system. In this case, we need con�gurable

components. We shall see below that these necessary properties can be concisely

described in an architectural style [1].

4 Architectural Organization

By and large, a product line architecture is the result of pulling together var-

ious existing systems into a coherent set of products. It is essentially a legacy

endeavor: begin with existing systems and generalize into a product line. There

are of course exceptions, but in this case the products preceded the product line.

The appropriate place to start considering the generic architecture is to look

at what had been done before. In this case we drew on the experience of two

6

teams for two di�erent products and use their experience to guide us in our

decisions.

As in many complex systems, there are multiple ways of organizing [2] both

the functionality and the various ways of supporting nonfunctional properties. In

this case, we see two more or less orthogonal dimensions of organization: system

objects and system functionality. System objects re
ect the basic hardware ori-

entation of these systems: packs, slots, protection groups, cables, lines, switches,

etc. System functionalities re
ect the things that the system does: con�guration,

connection, fault handling, protection, synchronization, initialization, recovery,

etc.

Given the two dimensions, the strategy in the two developments was to orga-

nize along one dimension and distribute the other throughout that dimension's

components. In the one case, they chose the system object dimension, in the

other they chose the system functionality dimension. In the former, the system

functionality is distributed across the system objects | for example, each sys-

tem object takes care of its own initialization, fault tolerance, etc. In the latter,

the handling of the various system objects is distributed throughout the sys-

tem functions | for example, initialization handles the initialization for all the

objects in the system.

Both groups felt their solutions were unsatisfactory and were going to choose

the other dimension on their next development.

Our strategy then was to take a hybrid approach: choose the components that

are considered to be central at the architectural level and then distribute the

others throughout those components | a mix and match approach. The question

then is how to gain consistency for the secondary components that get distributed

over the architectural components. We illustrate the use of architectural styles

as a solution to this problem in two interesting cases below.

5 Architectural Solution

We discuss our solutions to the issues we have raised and show how these di�er-

ent solutions �t together to resolve these issues in interesting ways. We discuss

�rst the architectural components needed to support dynamic recon�gurability.

We then discuss how distribution independence can be integrated with recon-

�gurability. We then delineate the general shape of the domain-speci�c part of

the generic architecture and describe how the entire architecture �ts together.

We then discuss the two primary connectors: one for recon�guration and one for

system execution. Finally, we present two architectural styles to illustrate the

distribution of the secondary dimension objects across the primary dimension of

organization.

5.1 Recon�guration (Requirement 2)

Recon�guration is split into two parts: recon�guration generation and recon�g-

uration management. The recon�guration generator is outside the architecture

7

SM

SD

CB

Fig. 6. Distribution Independence Components: System Model (SM), System

Data (SD), and Command Broker (CB).

of the system and ensures two primary requirements: �rst (requirement 2.1),

that the recon�guration constraints for completeness and consistency of a con-

�guration are satis�ed; second (requirement 2.2), that the con�gured system is

minimal [3], a requirement due to both space and time limitations.

The question arises then as to where this part of recon�guration should be.

Given the space and economic considerations of the systems, we chose to have the

consistency checking and recon�guration minimization done outside the bounds

of the system architecture.

In Figure 4, a new architectural con�guration (NC) is created by combin-

ing new components from software development (if there are any) with existing

assets and passing them to Recon�guration Generation (RG). The new con-

�guration is then checked for consistency and completeness (Check CC). Once

it is established that those constraints are satis�ed, the new con�guration is

compared against the current con�guration to to determine which architectural

components need to be added and deleted (C Min). The result is a Recon�g-

uration Package (RP) which is passed to the Recon�guration Manager (RM)

containing the instructions for dynamically recon�guring the software part of

the system.

To satisfy requirement 2 for system recon�gurability, we have the three com-

ponents illustrated in Figure 5: the recon�guration manager (RM), the system

model (SM) and the system provisioning data (SD).

The system model and system data provide a logical model of the system, the

logical to physical mapping of the various elements in the system con�guration,

and priority and timing constraints that have to be met in the scheduling and

execution of system functions.

The recon�guration manager directs the termination of components to be

removed or replaced, performs the component deletion, addition or replacement,

does the appropriate registration and mapping in the system model, and handles

8

CD

CC

CM CS DD

Fig. 7. Domain-Speci�c Components: Connection Manager (CM), Connection

Services (CS), Dynamic Data (DD), Connection Controller (CC), and Connection De-

vices (CD).

startup and reinitialization of new and existing components. Special care has

to be taken in the construction of the recon�guration manager so that it can

properly manage self-replacement, just as special care has to be taken in any

major restructuring of the hardware and software.

5.2 Distribution Independence (Requirement 1.1)

For the satisfaction of the distribution independence requirements, we have the

three components illustrated in Figure 6: the command broker (CB), the system

model (SM) and the system provisioning data (SD). Note that the system model

and the system provisioning data are the same as in the recon�guration solution.

The command broker uses the system model and system provisioning data

to drive its operation scheduling and invocation. System commands are made in

terms of logical entities and the logical to physical mapping is what determines

where the appropriate component is and how to schedule it and communicate

with it.

5.3 The Domain Speci�c Components

For the domain-speci�c part of the architecture we have chosen as the basic ar-

chitectural elements the connection manager (CM), the integrity manager (IM),

the connection services component (CS), the dynamic data component (DD),

the connection controllers (CC), and the connection devices (CD). These compo-

nents represent our choices for the architectural abstractions of both the critical

objects and the critical functionality necessary for our product line. Of these,

the integrity manager is a logical component whose functionality is distributed

throughout the other components shown in Figure 7.

9

Network Layer

Service Layer

Equipment Layer

CM

Fig. 8. Domain Speci�c Component Decomposition. The traditional layering

forms the basis of the subarchitectures of several of the basic domain speci�c compo-

nents. Here we see the decomposition of the Connection Manager (CM).

While we have not used the typical network model as the primary organizing

principle for the architecture, it does come into play in de�ning the hierarchy

or decomposition of several of the basic domain speci�c system components: the

connection manager (Figure 8 illustrates this decomposition of this component),

the connection services, and the connection controller.

5.4 Connectors

The recon�guration interactions shown in Figure 9 illustrate how the recon�g-

uration manager is intimately tied to both the system model and the system

provisioning data. This part of the recon�guration has to be handled with care

in the right order to result in a consistent system. Further, the recon�guration

manager interacts with itself and the entire con�guration as well as the indi-

vidual components of the system: terminate �rst, preserve data, recon�gure the

system model and system provisioning, and then recon�gure the components.

There are integrity constraints on all of these interactions and connections.

A logical software bus provides the primary connector amongst the system

components for both control and data access. The manager of the bus is the

command broker. There are other connectors as well, but they have not been

necessary for the exposition of the critical aspects of the generic architecture.

There are both performance and reliability constraints that must be met by

this primary connector. How to achieve these constraints was well within the

practicing architects expertize and as such is not, as performance issues in general

are not, within the scope of our research contributions nor the scope of this paper.

10

SM

SD

RM

CD

CC

CB CM CS DD

Fig. 9. Recon�guration Connections. The recon�guration manager is connected

in various ways to all the components in the system, including itself and the system as

a whole.

5.5 Architectural Styles

So far we have delineated the primary architectural components derived from the

goals for recon�guration or distribution independence, or from the two domain-

speci�c dimensions of organization possible for this product. For those domain-

speci�c components not chosen, we provide architectural styles to ensure their

unform implementation across all the chosen components. We present two such

styles as examples: a recon�gurable component style and an integrity manage-

ment style.

The recon�gurable component architectural style that must be adhered to

by all the recon�gurable components has the following constraints:

{ The component must be location independent

{ Initialization must provide facilities for start and restart, rebuilding dynamic

data, allocating resources, and initializing the component

{ Finalization must provide facilities for preserving dynamic data, releasing

resources, and terminating the component

We had also mentioned earlier that the integrity manager was a logical com-

ponent that was distributed across all the architectural components. As such

there is an integrity connector that hooks all the integrity management compo-

nents together in handling exceptions and recovering from faults. We had also

indicated that the part of the integrity management would be de�ned as an ar-

chitectural style that all the system components had to adhere to. This style is

de�ned as follows:

{ Recover when possible, otherwise recon�gure around the fault

{ Isolate a fault without impacting other components

{ Avoid false dispatches

11

SM

SD

RM

CD

CC

CB CM CS DD

Fig. 10. Architectural Connections. A software bus provides the primary control

and data connectors among the system components.

{ Provide mechanisms for inhibiting any action

{ Do not leave working components unavailable

{ Enable working in the presence of faults

{ Recover from single faults

{ Protect agains rolling recoveries

{ Collect and log appropriate information

{ Map exceptions to faults

{ Enable sequencing of recovery actions

Styles such as these function as requirements on architectural components to

guarantee a consistent and uniform set of component properties and behaviors.

6 Summary and Lessons

We have explored several interesting techniques to achieve a generic architec-

ture that satis�ed both the domain-speci�c requirements and the product-line

architecture requirements.

To delineate the appropriate domain-speci�c components, we used a hy-

brid approach in which we selected what we considered to be the critical el-

ements from two orthogonal dimensions of organization. We then de�ned archi-

tectural styles to ensure the consistency of the secondary components distributed

throughout the primary components.

We de�ned a logical software bus, subject to both performance and reliability

constraints, as a general connector among the components. These constraints are

especially important where the underlying implementation and organization is

distributed across several independent physical components.

To achieve the appropriate goals of the generic architecture covering a wide

variability of hardware architectures and enabling dynamic recon�guration, we

12

chose a data-driven, late binding, location transparent and re
ective approach.

This enabled us to solve both the problem of centralized and distributed systems

and the problem of recon�guration with a set of shared and interdependent

components.

As to lessons learned:

{ There are many ways to organize an architecture, even a domain speci�c

one. Because there are multiple possible dimensions of organization, some

orthogonal, some interdependent, experience is a critical factor in the selec-

tion of critical architectural elements, even when considering only functional,

much less when considering non-functional, properties.

{ It is important for any architecture, design or implementation to have ap-

propriate and relevant abstractions to help in the organizing of a system.

An example in this study is that of a connection as the central abstraction.

Concentration on the concepts and abstractions from the problem domain

rather than the solution domain is critical to achieve these key abstractions.

{ Properties such as distribution-independence or platform-independence are

extremely useful in creating a generic product line architecture. They do,

however, come at a cost in terms of requiring architectural components to

implement the necessary properties of location transparency or platform

transparency.

{ Architectural styles are an extremely useful mechanism in ensuring uniform

properties across architectural elements, especially for such considerations as

initialization, exception handling and fault recovery where local knowledge

is critical and isolated by various kinds of logical and physical boundaries.

These styles de�ne the requirements that the system components must sat-

isfy to guarantee the properties and behaviors of the secondary components.

Acknowledgements

Nancy Lee was my liaison with the architectural group on this project. She helped

in many ways, not the least of which was making project data and documents

available for me to write up this case study. The system architects on the project

as a whole were very tolerant of an outsider working with them. However, we

achieved a good working relationship combining their domain expertize with

my research investigations together with a willingness to explore alternative

possibilities.

Thanks also to Ric Holt at Waterloo for his comments and suggestions.

References

1. Dewayne E. Perry and Alexander L Wolf. Foundations for the Study of Software

Architecture. ACM SIGSOFT Software Engineering Notes, 17:4 (October 1992)

2. Dewayne E. Perry. Shared Dependencies. In Proceedings of the 6th Software Con-

�guration Management Workshop, Berlin, Germany, March 1996.

13

3. Dewayne E. Perry. Maintaining Minimal Consistent Con�gurations. Position paper

for the 7th Software Con�guration Management Workshop, Boston Massachusetts,

May 1997. Patent granted.

4. Dewayne E. Perry. Generic Architecture Descriptions. In ARES II Product Line

Architecture Workshop Proceedings, Los Palmas, Spain, February 1998.

14

