
- 1 -

Infuse:
Fusing Integration Test Management

with Change Management

Gail E. Kaiser* Dewayne E. Perry William M. Schell
Columbia University AT&T Bell Laboratories AT&T Bell Laboratories

Dept of Computer Science Computer Systems Research Lab Computer Systems Research Lab
New York, NY 10027 Murray Hill, NJ 07974 Murray Hill, NJ 07974

Infuse is an experimental software development environment focusing on change coordination during the
maintenance/evolution phase of large scale software projects. Its core philosophy is to integrate strongly
connected modules first and more weakly connected sets of modules later, moving up a hierarchy from
singletons to clusters of interdependent modules and, finally, merging the change set into the baseline. We
have previously described how Infuse enforces static consistency at each level of the hierarchy. We now
extend our work to dynamic consistency — i.e., testing. Unit testing is done for the individual modules at
the leaves of the hierarchy, integration testing for the intermediate clusters and acceptance testing at the
root. Infuse supports this by partially automating the construction of test harnesses and regression test
suites at each level of the hierarchy from components available from lower levels. Infuse is
implemented for C, and is used to support its own evolution, but the implementation does not yet provide
the test management described here.

* Supported by National Science Foundation grants CCR-8858029 and CCR-8802741, by grants from
AT&T, DEC, IBM, Siemens, Sun and Xerox, by the Center for Advanced Technology and by the
Center for Telecommunications Research.

keywords: change coordination, integration testing, programming-in-the-many, regression testing,
software development environments, software maintenance)

- 2 -

1. Introduction

The purpose of this paper is to present a novel approach to integration test management suitable for large-
scale projects. Our approach has four primary contributions: hierarchical integration, semi-automatic
construction of test harnesses, semi-automatic construction of regression test suites, and integration of these
facilities into Infuse, an experimental software development environment.

• Hierarchical integration of modified modules and subsystems is hardly a new idea, but is rarely
enforced (or even supported); Infuse enforces hierarchical integration, where the hierarchy may be
selected by a distinguished user according to subsystem design or managerial concerns, or may be
generated automatically by Infuse according to the strengths of dependencies among modules.

• Test harnesses consist of test drivers and stubs, where a stub for a module includes surrogates for all
subroutines and objects expected to be provided by that module. At the unit testing level, where an
individual user tests his own module(s) in isolation, Infuse can generate the headers for the stubs
automatically but the contents must be constructed by hand or by some external mechanism. At higher
levels in the hierarchy, however, Infuse reuses stubs, or components of stubs, from lower levels in
the construction of the higher level test harnesses.

• Regression test suites consist of two classes of test cases: those specifically constructed for the
collection of modules or subsystems at the current level of the integration hierarchy, and those
previously executed on some subset of these modules at a lower level. The first class must be built by
hand or by some external mechanism, but Infuse selects the second class by keeping track of those
tests previously exercised on surrogates rather than components of the actual module.

• These facilities are not independent tools, but integral components of the Infuse environment. The
test management facilities share the same object management system — including object repository and
query interface — with the change management facilities. The hierarchical integration is directly
enforced by the environment’s concurrency control mechanism.

Infuse is a ‘city model’ software development environment (SDE) [18], that is, it addresses the special
problems of developing and maintaining large-scale software projects, where the scale is in terms of
programming-in-the-many as well as programming-in-the-large. We believe that some seemingly small
number of programmers (say, 20) is effectively a ‘crowd’. Crowd control inherently makes change
management so complex that technological, in addition to managerial, mechanisms are required to handle
the interactions among the programmers. In previous papers [16, 20], we have presented our philosophy
and the basic mechanisms for isolating groups of modules1

into a hierarchy of private databases. This hierarchy is based on the reserve/deposit (also known as
reserve/replace) model prevalent in software development environments, where modules or other software
artifacts are reserved (locked), copied to a private area, modified, and deposited (atomically updated to the
public area and unlocked). We extend this model to a hierarchy in order to minimize the implications and
extent of changes that groups of programmers as well as individual programmers must cope with at one
time. This paper extends our previous work to support integration test management. In particular, we
report the design of Infuse support for semi-automatic construction of test harnesses and selection of
regression test suites at each (interior) level in the hierarchy.

A prototype implementation of Infuse has been completed, and is being used in its own further
development. Infuse is implemented in C and runs on MicroVax, Sun and HP workstations. The
prototype includes a hierarchical clustering algorithm [13], a simple object repository implemented using
IDL [25] and RCS [27], a simple graphical browsing interface constructed using X windows, and a
hierarchical reserve/deposit model that enforces syntactic consistency (using the Unix lint utility) before
permitting deposit into the next higher level of the hierarchy.

1. A module is any separately compilable syntactic unit, such as an Ada package, a Modula-2 module or a C source file.

- 3 -

In the next section, we give an overview of the change management facilities of Infuse. We then
illustrate how Infuse supports both change and test management. The subsequent two sections describe
the test harness and regression test suite construction facilities, respectively, in detail. We conclude by
comparing our approach to related work.

2. Infuse Overview

The Infuse change management framework constructs and maintains a hierarchy of experimental
databases (EDBs), where each EDB contains a subset of the change set, that is, the set of modules to be
modified. At each level of the hierarchy, the subset of the modules in the parent EDB are partitioned into
child EDBs. EDBs near the bottom of the hierarchy may be private to an individual programmer or private
to a group of closely cooperating programmers, while EDBs near the top may be ‘private’ to large groups
of programmers or to special integration groups. The change process consists of constructing the full
hierarchy, making the actual edits in the leaves of the hierarchy, and enforcing the integration of the
modules and subsystems within each EDB before permitting the EDB to be deposited into its parent.

By enforcing integration, we mean that Infuse allows the deposit of the child EDB into its parent only if
it’s locally consistent. The module(s) in the child EDB may have to be changed several times before local
consistency is achieved. Local consistency requires both a static component, which applies some analysis
tool to the module(s) to detect errors, and a dynamic component, which executes the module(s) to detect
errors.

The rationale for this hierarchical integration is the widely accepted software engineering rule-of-thumb
that errors detected early in the lifecycle are much less costly to repair than errors detected late [4, 2]. The
same concept applies during maintenance: Interface errors detected earlier in the preparation for a patch or a
new release are less expensive that those detected later.

There are two well-known mechanisms for structuring the modules of a system into a hierarchy: managerial
and design. A significant innovation of Infuse is a new kind of hierarchy, dependency-order, where
strongly interconnected modules are placed together near the bottom of the hierarchy and more weakly
connected modules are placed together closer to the top. Infuse permits a distinguished user to select any
of these three bases with respect to the new change set, and in the managerial or design cases the complete
hierarchy must be given by the user.

Infuse generates the dependency-order hierarchy by clustering] of the change set, using a non-Euclidean
similarity metric based on the interdependencies between pairs of modules. Typically, the similarity
between two modules is defined as the total number of symbols (e.g., subroutine names, object names, and
so on) exported by one module and imported in the other, or more precisely, defined by one module and
used in the other [28]. Other metrics could be used, for example, to weight according to the number of
times each symbol is used or according to the number of semantic dependencies associated with each
symbol [17]. The similarity metric between two sets of modules { M 1 , ... ,M n } and { M n + 1 , ... ,M p } is
defined by any one of several statistical measures applied to the basic metric; the details are outside the
scope of this paper (see [13, 14]). Our similarity metric based on dependencies is used as an approximation
to the oracle that would tell us, in advance, exactly how the interfaces of modules will be changed and how
this will affect other modules. The intuition is that changes will have more effects on strongly connected
modules than on weakly connected ones, according to a simplistic proportionality argument.

In addition to the strict hierarchy of experimental databases, Infuse also supports workspaces, which cut
across the tree to permit an arbitrary graph structure. Each workspace contains two or more experimental
databases, which need not be at the same level of the hierarchy. Each workspace is constructed by human
selection of a set of existing experimental databases. A workspace operates just like an experimental
database for the purpose of integrating the modules and subsystems contained in the workspace. The
difference is there is no ancestor to deposit the workspace into once consistency has been demonstrated.
The rationale is to support early integration among modules that do not appear together until relatively high
in the hierarchy. This is useful in those cases where the programmers’ knowledge of the system and the
specific change in progress indicates that this early integration is crucial. In the case where dependency-
order rather than a managerial or design hierarchy is used, this alleviates the problems where change
implications do not follow the strengths of module interdependencies — for example, reorganizations

- 4 -

where the interdependencies themselves are significantly modified and/or changes where weakly connected
modules are significantly affected.

3. Using Infuse: An Example

- 5 -

_ __

A B . . . Y Z

A B . . . F G

_ __
Figure 3-1: Baseline and Change Set

The Infuse change management system operates as follows for a scheduled set of changes, such as for a
new release or patches to a previous release. The change set is selected manually by a system analyst or
automatically by a modification request (MR) system, such as CMS [23]. Infuse checks out new
revisions of the modules in this set from the version control system as shown in figure 3-1, extracts their
dependency matrix and invokes the clustering algorithm to determine a hierarchy according to the strengths
of interconnections. The group of modules assigned to the same programmer may be treated as a single
module for the purposes of clustering. Infuse then builds the hierarchy of EDBs containing the new
revisions of the appropriate modules, as shown in figure 3-2. Programmers work on their assigned
module(s) in the EDBs at the leaves of the hierarchy. For simplicity, we assume a leaf EDB consists of a
single module and the programmer is responsible only for this individual module; thus, we refer to leaf
EDBs as singletons.

_ __

A B . . . Y Z

A B . . . F G

DA B C E F G

FE GA B C

BA

_ __
Figure 3-2: Hierarchy of Experimental Databases

When a programmer finishes editing his module, say A, he requests the consistency analysis tool, which
determines whether or not A is locally consistent. Syntactic consistency requires that every identifier
defined in A is used within A in the manner prescribed by the static semantics (i.e., context-sensitive syntax)
of the programming language. Each use of an identifier defined externally (i.e., not defined in A) must be
consistent with all other uses of the same identifier within A. In the case of semantic consistency [19],
every identifier must be used correctly with respect to the semantic specification mechanism employed. For
simplicity, we assume syntactic consistency analysis throughout the rest of this paper. Once module A is
statically consistent, the programmer builds a test harness. The harness consists of a driver D A that invokes
the module to perform the tests and a set of stubs S A that perform, in an abstract sense, the functionality of
those external modules referenced by A. In particular, stub S A,M represents all the subroutines and data
defined by some module M and used in module A. Infuse compiles and links A together with D A and S A ,

- 6 -

and then the programmer proceeds with testing and debugging.

_ __

A

test env

S
A

D
A

T
A

test results

stubs used for each test

_ __
Figure 3-3: Unit Testing Stubs and Test Suite

The programmer devises a set of unit tests that together meet some test data adequacy criteria [29], perhaps
with the aid of an adaptive test generation tool [20]. The stubs, driver and unit test suite are associated with
a singleton EDB as shown in figure 3-3. As the test suite T A is applied, Infuse keeps track of which
stubs are executed by which tests. After his module A has passed all these tests, the programmer enters a
command to deposit it. Before allowing the deposit, Infuse requires that A is in fact locally consistent in
the static sense of the analysis tool and in the dynamic sense of the unit tests. Infuse then checks the
module into the version control system, makes this new version visible to the other modules in the parent
EDB, and saves D A , S A , T A and the association between tests and stubs during unit testing of A.

At some point, all the sibling (singleton) EDBs have been deposited into their parent EDB, which then
contains several modules that are very strongly interdependent. In general, each EDB at every level of the
hierarchy should have a relatively small number of children (we somewhat arbitrarily choose the range 2 to
5) to keep the set of new interactions relatively manageable. Infuse invokes the static analysis tool to
check that these modules are locally consistent. If not, it informs the responsible programmers, who
negotiate among themselves, agree on further changes, and notify Infuse of the modules that must again
be changed. Infuse generates singleton EDBs for these modules and the singleton process repeats as
necessary.

_ __

- 7 -

A B

test env

S
AB

D
AB

T
AB

D
A

T’
A

D
B

T’
B

...........

T
A

...........

T
B

test results

stubs used for each test

S
A

S
B

.........................

..
..

..
..

..
..

..
..

..
..

..
..

.

_ __
Figure 3-4: Automatically Selected Stubs and Tests

If the modules in the EDB AB are locally consistent to the extent that can be determined by a static analysis
tool, Infuse constructs a set of stubs S AB for integration testing from the sets S A and S B available from
unit testing. Infuse automatically selects the regression test suite T R (T ′ A and T ′ B) from the unit test
suites T A and T B . Usually some programmer must build a new test driver D AB to execute any new tests
T AB . The resulting drivers, stubs and tests are illustrated in figure 3-4. The tests are then executed and
debugging proceeds. If no errors are detected, the current EDB can be deposited into its parent, and so on,
and the hierarchy condenses as shown in figure 3-5.

- 8 -

_ __

A B . . . Y Z

A B . . . F G

A B C E F G

E

_ __
Figure 3-5: Hierarchy After Several Deposits

If errors are detected, however, the programmers negotiate and select a subset of the EDB for further
modification. Infuse locally repartitions this subset into singleton databases, as is done for
inconsistencies detected by the analysis tool. A possible result is shown in figure 3-6. After the subset has
been modified and redeposited, Infuse constructs a new regression test suite in the same manner as it
constructed the original, failed suite for this EDB.

_ __

A B C

A B

_ __
Figure 3-6: Repartioning for Further changes

Once all the regression tests have been passed, a programmer can issue the deposit command to move the
integrated EDB into its parent. When all the siblings have also been deposited, this process is repeated at
each level using as components the modules, stubs and test suites of the previous level in the hierarchy.
Any inconsistencies result in repartitioning the subtree below the EDB where the inconsistency was
discovered.

- 9 -

_ __

FED

A B C D E F G H

G HA B C D E F

A B C D E F G H

_ __
Figure 3-7: Change Simulation in an Individual Workspace

At some point during the change process, a programmer may realize there is a strong interaction among the
changes he’s pursuing in his EDB and a change being made by one or more other programmers in other
EDBs, but their modules will not be considered for integration until relatively high in the EDB hierarchy.
In these cases, the first programmer can construct a workspace consisting of all of these EDBs. An example
is shown in figure 3-7, where the programmer responsible for module E wants to see how his changes
interact with the new versions of modules A, B and C. The workspace is used for change simulation, as
opposed to the change propagation necessary to deposit an EDB. Like change propagation, static and
dynamic consistency checking is applied to the union of the modules from the EDBs in the workspace;
however, there is no notion of depositing a workspace, and it can be simply dissolved at any time. Any
errors become known only to the first programmer, who may then make corrective changes to his own
modules or communicate with the other programmer.

_ __

A B . . . Y Z

A B . . . F G

DA B C E F G

FE GA B C

BA

_ __
Figure 3-8: Change Simulation in a Group workspace

Alternatively, two or more programmers could construct a shared workspace consisting of their own EDBs.
For example, in figure 3-8, the programmers responsible for C, D and E decide to integrate their modules
early. In the case of a group workspace, change simulation notifies all these programmers of any errors,
and they may negotiate early corrections. Note that this is a departure from our previous papers, where
simulation implied notification of only the individual programmer who initiated the consistency checking.
We now think of all consistency checking within a workspace, as opposed to an EDB, to be a form of
change simulation rather than change propagation. Change simulation can still be performed with respect

- 10 -

to an EDB, where one programmer in a child EDB requests consistency checking with respect to the current
contents of the parent EDB and is notified of any errors.

At the top-level of the hierarchy, three tasks must be performed. First, the entire change set must be
integrated by this mechanism. Then it must be integrated with the unchanged modules in the baseline
version of the program. This stage is illustrated in figure 3-9. Finally, after acceptance testing, Infuse
deposits the modules in the top-level EDB into the base-line database, checks off the MR, and performs any
necessary updates regarding the configuration management system.

_ __

A . . G

test env

H . . Z

D
Sys

T
Sys

Acceptance

Test Results

_ __
Figure 3-9: Acceptance Testing

4. Test Harnesses

Infuse aids the programmers in constructing both the stubs and drivers of test harnesses. First we
explain how, for each EDB, Infuse considers the collection of stubs associated with all its children
EDBs and determines which stubs are replaced by modules, which stubs can continue to be used, and which
potentially conflict with other stubs. At the end of this section we sketch how Infuse determines when a
driver from a descendant database can be used in an ancestor database.

4.1 Stubs

Consider an EDB E containing the set of modules { M 1 , ... ,M k }. E is the parent of a set of child EDBs,
each of which contains a disjoint non-null subset of these modules. Each M (i.e., one of the M i) in one of
the child EDBs has a set of stubs S M from its singleton EDB. Infuse operates according to the algorithm
shown in figure 4-1 to construct the set of stubs for E.

_ __

Let S E be the set of stubs associated with experimental database E,

- 11 -

M, N and O be modules,

S M be the set of stubs associated with module M in the current EDB, and SM,N
− be the stub that

represents module N as used by module M in the child EDB containing M

In

S E ← ∅
−\/ M∈E do

S M ← ∪ N { S M,N−
}

−\/ O∈E st O ≠ M do
if O is complete wrt M then

S M ← S M − S M,O
−\/ S M,N ∈S M do

if { O∈E O ≠ M/\ S O,N ∈S E } then
ask whether to keep, replace or merge
and modify S M accordingly

S E ← S E ∪S M

_ __
Figure 4-1: Algorithm for Stub Selection

Infuse examines each stub S M,N , constructed to represent absent module N as used by module M. All
such stubs where N is present in the current EDB (that is, N is one of the M i distinct from M) are replaced
by N, as the first part of the integration. Note that we use the real module, now that it is available, rather
than a stub. This works only when N is complete with respect to M. For example, if the design for N calls
for it to export facilities f, g and h, but only facilities f and g are currently implemented, then N is
incomplete. If M actually uses only f and g, then N is complete with respect to M; if M actually uses f and
h, then N is incomplete with respect to M. These two cases are addressed by other tools, such as PIC [30],
where the two modules are called "consistent" and "conditionally consistent", respectively. Infuse uses
its analysis tool to detect cases where N does not provide all the facilities simulated by the corresponding
set of stubs. In this case, N is treated as if it were just a candidate stub available from a child EDB.

Other stubs will also remain, since the corresponding modules will not be integrated until higher levels of
the hierarchy. Among these, it is likely that many stubs S x,N will be duplicate, that is, there is more than
one stub representing N in the context of module O another in the context of P, etc. This is represented in
Ssubx ,N by the lowercase variable x. Note that the duplication of a stub does not imply the duplicates are
identical, and in fact the content of these stubs may be markedly different, due to the different requirements
placed by the context modules. Thus where there is a duplication, it is rarely acceptable to automatically
choose one among the supposed ‘equivalence class’ of stubs to replace all elements of that class with
respect to the coming round of compilation, linking, testing and debugging.

Infuse does not require this kind of conflict — i.e., duplication — to be resolved. Instead, it brings the
problem to the attention of each programmer whose module M uses one of the stubs in a particular
equivalence class. The programmer can choose to continue using his own stub SM,N

− from the previous
level of the hierarchy, begin using one of the other stubs Sx,N

− from the previous level, or create a new stub
S M,Nfrom scratch or by merging (using a standard text editor) the contents of some subset of these stubs.
The superscript "-" refers to a stub available from a child EDB. If more than one stub remains in the class
after all programmers have made their decision, Infuse does the necessary internal renaming to ensure
the decisions are reflected in the executable image generated by normal compilation and linking.

4.2 Drivers

The set of drivers for an EDB is of course closely tied to its test suite. For each EDB, we can divide the
members of the test suite into two classes:

• tests that originate at this EDB and check the functionality, performance, etc. of the corresponding
subsystem; and

- 12 -

• tests that originated at a descendant EDB that are reapplied as regression tests because the integration
makes it possible for the results of the tests to be different now than when previously performed at a
lower level of the hierarchy.

For tests in the first class, the new set of drivers must usually be constructed by the programmers, perhaps
by merging several existing drivers associated with descendant EDBs. For carrying out tests in the second
class, however, Infuse can automatically retain the original drivers.

5. Regression Testing

_ __

Let E i be the ith descendant of experimental database E in some standard ordering such as preorder,

T R be the regression test suite for E,

S ′ i be the set of stubs, among those associated with the ith descendent, which were replaced in E
(using the algorithm given previously),

T i be the subset of the test suite associated with the ith descendent which actually excercised S ′ i

T ′ Ri
be the subset of the regression test suite, from the test suite associated with the ith descendant,

which actually exercised S ′ i

In T i ← ∪ T ′ Ri
∪ ∪ T ′ i

_ __
Figure 5-1: Algorithm for Regression Test Selection

The preceding discussion of drivers suggests our approach to integration testing, which follows the
algorithm shown in figure 5-2 (most of the algorithm appears in the let clause). In the worst case, the
regression test suite T R for an experimental database E is the union of all the test sets from the descendent
EDBs. The complete test suite T E also includes any additional subsystem tests added at this point by one or
more of the relevant programmers. Infuse helps reduce the amount of testing, because a regression test
is executed only when one or more stubs exercised by that test in a descendant EDB is replaced by actual
code in the current EDB.

Infuse determines the tests to mark as follows: Any tests applied directly to a module that continues to
use (transitively) exactly the same set of stubs as in the relevant descendant EDB is assumed to return the
same results for the same inputs. This is of course true only if the stubs guarantee repeatability; Infuse
cannot automatically reduce T R if the stubs and/or modules involve nondeterminism (e.g., values based on
the system clock, concurrency).

We assume Si
′ is computed as an extension of the previous algorithm, making this algorithm relatively

simple. Note the following implication for the driver (actually a set of drivers) D R used for regression
testing of E.

D R = { D i T ′ i ≠ ∅ }

5.1 A Note on Program-based versus Specification-based Testing

So far, we have ignored the questions of how the tests are produced and how a test suite is determined to be
"adequate" according to some standard. These questions can be answered in two different ways, following
the two divergent forms of test case coverage that have been proposed [9], program-based and
specification-based. Program-based testing implies inspection of the source program and selection of test
cases that together cover all possibilities, where the possibilities might be statements, branches, control
flow paths or data flow paths. In practice, some intermediate measure such as essential branch coverage [3]
or feasible data flow path coverage [5] is most likely to be used, since the number of possibilities might
otherwise be infinite or at least infeasibly large.

In the case of program-based testing, the test suite for each EDB would consist of the new tests for the
module(s) introduced by the EDB, plus additional tests to deal with the combinatorics between the paths
through these modules and the paths through the modules at the next lower level of the program. The

- 13 -

Infuse notion of dependency-order hierarchy thus fits well with program-based testing, since the
massively connected modules are tested early. However, particular program-based testing tools (such as
Asset [6]) might require a different ordering.

Unlike program-based testing, specification-based (‘black-box’) testing does not consider the source
program. It instead addresses the (functional and non-functional — for instance, performance) specification
of the system, and hopefully the specifications of its subsystems and individual modules. The current state
of the art permits automatic test case generation and/or test adequacy determination for only a few special
cases — for example, mathematical subroutines [22].

The Infuse dependency-order hierarchy may not be the best for specification-based testing. There is
typically a design hierarchy determined from the specification, where the specification-based tests are
associated with the units of this design. Even though the design hierarchy often implies the initial
interdependencies among modules, and thus the initial dependency-order hierarchy, the two may not be
very similar after a sequence of changes. But Infuse does not require a dependency-order hierarchy; the
clustering component of the system can be replaced with some other mechanism for partitioning the change
set. Infuse still uses the same rules to determine whether or not to apply regression tests at each level of
the hierarchy, independent of how the hierarchy is derived.

6. Related Work and Future Directions

Our notion of an experimental database was initially introduced in Smile [11], a multiple-user programming
environment for C developed as part of the Gandalf project [7] at Carnegie Mellon University. Infuse
extends this notion to (1) a hierarchy, (2) automatic partitioning of the change set into EDBs, and (3)
integration testing. More recently, Sun Microsystem’s Network Software Environment (NSE) [26]
provides a more general hierarchy of environments with a copy/modify/merge model [1] oriented towards
smaller teams of programmers. Copy/modify/merge is an optimistic variant of reserve/deposit where the
module is not locked so multiple programmers can copy it to a private area and modify it; NSE prevents
deposit until the changes have been merged with any other changes to the same module since the copy was
made. Thus, NSE supports a form of static consistency checking but does not provide any special facilities
for testing and requires manual partitioning.

There has been much previous research on testing strategies and tools as they relate to programming-in-
the-small [31, 24], and some work on integration of subroutines [8]. SpecMan [15] supports cross-
referencing of test cases with portions of the design document, to ensure that test cases are updated in
response to design changes. To our knowledge, Infuse is the only large-scale SDE directly concerned
with integration test management.

Our plans for the Infuse include:

• Adding the integration test management to the prototype implementation.

• Continuing our work on consistency and concurrency control, and eventually incorporate an extended
transaction model suitable for software process activities [21].

• Extending Infuse to a distributed implementation by merging Infuse with Mercury [12], a
generation system for multiple-user, distributed language-based environments (using incremental
evaluation of attribute grammars)

• Integrating Infuse with Inscape [19] to support a semantic consistency model (i.e., preconditions,
postconditions and obligations with respect to each program unit) in addition to the current syntactic
model.

Acknowledgements

Yoelle Maarek developed the hierarchical clustering algorithm used by Infuse. Ben Fried, Barry
Goldberg, Bireley Jeng, Pierre Nicoli, Gretchen Taylor and Travis Winfrey worked on the implementation
of Infuse under the direction of Bulent Yener. We would like to thank Yoelle Maarek, Maria
Thompson, Michael van Biema, Alex Wolf and Bulent Yener for their useful comments on an earlier

- 14 -

version of this paper.

References

[1] Evan Adams, William Courington, Jonathan Feiber, Jill Foley, David Hendricks, Masahiro Honda,
Tom Lyon, Terrence Miller, Russell Sandberg, and Daniel Scales. ‘‘Object Management in a
CASE Environment’’, 11th International Conference on Software Engineering , Pittsburgh PA,
May, 1989.

[2] Barry W. Boehm, ‘‘A Spiral Model of Software Development and Enhancement’’, Computer, (May
1988), 21:5, pp61-72.

[3] Takeshi Chusho, ‘‘Test Data Selection and Quality Estimation Based on the Concept of Essential
Branches for Path Testing’’, IEEE Transactions on Software Engineering , SE-13:5 (May, 1987),
pp509-517.

[4] Richard Fairley, Software Engineering Concepts , McGraw-Hill Book Co., New York, 1985.

[5] Phyllis G. Frankel and Elaine J. Weyuker, ‘‘Data Flow Testing in the Presence of Unexecutable
Paths’’, IEEE Computer Society, Workshop on Software Testing , July, 1986, Banff, Canada, pp4-
13.

[6] Phyllis G. Frankl and Elaine J. Weyuker, ‘‘A Data Flow Testing Tool’’, SoftFair II A 2nd
Conference on Software Development Tools, Techniques, and Alternatives , December, 1985, San
Francisco CA, pp46-53.

[7] A.N. Habermann and D. Notkin, ‘‘Gandalf: Software Development Environments’’, IEEE
Transactions on Software Engineering, SE-12:12 (December 1986), pp1117-1127.

[8] Allen Haley and Stuart Zweben, ‘‘Module Integration Testing’’, Computer Program Testing ,
editors: B. Chandrasekaran and S. Radicchi, North-Holland Publishing Co., New York, 1981.

[9] William E. Howden, Functional Program Testing & Analysis , McGraw-Hill Book Co., New York,
1987.

[10] Gail E. Kaiser and Dewayne E. Perry, ‘‘Workspaces and Experimental Databases: Automated
Support for Software Maintenance and Evolution’’, ,I "Conference on Software Maintenance",
Austin TX, September, 1987, pp108-114.

[11] Gail E. Kaiser and Peter H. Feiler, ‘‘Intelligent Assistance without Artificial Intelligence’’, 32nd
IEEE Computer Society International Conference , February, 1987, San Francisco CA, pp236-241.

[12] Gail E. Kaiser, Simon M. Kaplan and Josephine Micallef, ‘‘Multiuser, Distributed Language-Based
Environments’’, IEEE Software , November, 1987, pp58-67.

[13] Yoelle S. Maarek and Gail E. Kaiser, ‘‘Change Management for Very Large Software Systems’’, ,.I
"7th Annual International Phoenix Conference on Computers and Communications," March, 1988,
Scottsdale AZ, pp280-285.

[14] Yoelle S. Maarek, ‘‘Using Structural Information for Managing Very Large Software Systems,’’
Technion — Israel Institute of Technology, August, 1988. This version is prior to final revisions.

[15] Thomas J. Ostrand, Ron Sigal and Elaine J. Weyuker, ‘‘Design for a Tool to Manage Specification-
Based Testing’’, IEEE Computer Society, Workshop on Software Testing, July, 1986, Banff,
Canada, pp41-50.

[16] Dewayne E. Perry and Gail E. Kaiser, ‘‘Infuse: A Tool for Automatically Managing and
Coordinating Source Changes in Large Systems,’’ ACM 15th Annual Computer Science
Conference’, February, 1987, St. Louis MO, pp292-299.

[17] Dewayne E. Perry, ‘‘Software Interconnection Models’’, 9th International Conference on Software
Engineering , Monterey CA, March, 1987, pp61-69.

- 15 -

[18] Dewayne E. Perry and Gail E. Kaiser, ‘‘Models of Software Development Environments’’, 10th
International Conference on Software Engineering , April, 1988, Raffles City, Singapore, pp60-68.

[19] Dewayne E. Perry, ‘‘The Inscape Environment’’, 11th International Conference on Software
Engineering , Pittsburgh PA, May, 1989, pp 2-12.

[20] Ronald E. Prather and J. Paul Myers, Jr., ‘‘The Path Prefix Software Testing Strategy’’, IEEE
Transactions on Software Engineering , SE-13:7 (July 1987), .pp761-766

[21] Calton Pu, Gail E. Kaiser and Norman Hutchinson, ‘‘Split-Transactions for Open-Ended
Activities’’, 14th International Conference on Very Large Data Bases , August, 1988, Los Angeles
CA, pp26-37.

[22] Robert P. Roe and John H. Rowland, ‘‘Some Theory Concerning Certification of Mathematical
Subroutines by Black Box Testing’’, IEEE Transactions on Software Engineering , SE-13:6 (June
1987), pp677-682.

[23] B.R. Rowland and R.J. Welsch, ‘‘The 3B20D Processor & DMERT Operating System: Software
Development System’’, The Bell System Technical Journal , 62:1, part 2 (January, 1983), pp275-
289.

[24] ACM/SIGSoft and IEEE/CS Software Engineering Technical Committee. 2nd Workshop on
Software Testing, Verification and Analysis , IEEE Computer Society, Banff Canada, 1988.

[25] Richard Snodgrass and Karen Shannon, ‘‘Supporting Flexible and Efficient Tool Integration’’,
’AdvancedProgrammingEnvironments", editors: Reidar Conradi, Tor M. Didriksen and Dag H.
Wanvik. Springer-Verlag, Berlin, 1986, pp290-313.

[26] Introduction to the NSE , Sun Microsystems, Inc., Mountain View CA, March, 1988

[27] Walter F. Tichy, ‘‘Smart Recompilation’’, ACM Transactions on Programming Languages and
Systems, 8, 3, July, 1986, pp273-291.

[28] Walter F. Tichy, ‘‘RCS — A System for Version Control’’, Software — Practice and Experience ,
15, 7, July, 1985, pp637-654.

[29] Elaine J. Weyuker, ‘‘Axiomatizing Software Test Data Adequacy’’, IEEE Transactions on Software
Engineering , SE-12:12 (December 1986), pp1128-1138.

[30] Alexander L. Wolf, Lori A. Clarke and Jack C. Wileden, ‘‘Ada-Based Support for Programming-
in-the-Large’’, IEEE Software , 2:2 (March 1985), pp58-71.

[31] ACM/SIGSoft and IEEE/CS Software Engineering Technical Committee. 2nd Workshop on
Software Testing , IEEE Computer Society, Banff Canada, 1986.

CONTENTS

1. Introduction . 2

2. Infuse Overview . 3

3. Using Infuse: An Example . 4

4. Test Harnesses . 10
4.1 Stubs . 10
4.2 Drivers . 11

5. Regression Testing . 12
5.1 A Note on Program-based versus Specification-based Testing 12

6. Related Work and Future Directions 13

