
Enactment Control in Interact/Intermediate

Dewayne E. Perry

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 USA

Abstract. Interact/Intermediate supports goal-directed process model-

ing in such a way as to maximize the concurrency of activities and to
minimize the direct control of humans in the process. In this context,

there are three di�erent and interacting loci of control which we illus-

trate and discuss with an example: an implicit, internal locus of control;
an external, arbitrary locus of control; and an explicit, internal locus of

control.

1 Introduction

The philosophy of Interact/Intermediate [1-3] is to support goal-directed process

modeling in such a way as to maximize the concurrency of activities and to

minimize the direct control of the human element in the process. Interact is the

process description language by which the necessary artifacts, project structures,

organizational structures, and process activities are de�ned; Intermediate is the

support environment which, via the process models, provides the context for the

process being enacted by both humans and tools.

Interact's emphasis is on specifying the assumptions and goals of the various

process activities while, in general, leaving the details of the activities imple-

mentation to the enactor. Providing guidance in implementing the structure of

an activity is one of the primary purposes of Intermediate.

However, there are times when the modeler will want to de�ne in some detail

the enactment structure of an activity. For example, the detailed description

may be the result of a desire for a particular approach to avoid some particular

problem, a desire for some standard steps in certain activities across a particular

project, or a desire to automate a particular routine activity.

Two further considerations are important in the design of the enactment con-

trol mechanisms of Interact: dynamism and reectivity. The process by which

we build and evolve large software systems is of necessity an extremely dynamic

one. The activities required at any particular point in time are dependent on the

state of the artifacts being produced, the state of the project and organization,

and the state of the process itself. Only by being able to reify both the state of

a process and the process itself can the process be su�ciently adaptive and dy-

namic. Not only will the human enactor dynamically create processes out of the

activity fragments, but the process itself will dynamically create the necessary

enactment control structures for the particular state of the product, project and

process.

Given these various requirements on the design of the description language

and the support environment, it is worth noting that there are three di�erent

loci of control that will interact with each other in controlling the enactment of

any given process: an implicit, internal locus of control, an arbitrary, external

locus of control, and an explicit, internal locus of control.

In the subsequent sections, we discuss these three loci and indicate how they

interact with each other.

2 Implicit, Internal Locus of Control

Activity descriptions are the basic process fragments from which an enacted

process is constructed. An activity description consists of an activity name, a set

of typed parameters, a set of policies (policies are �rst order predicates over �nite

sets) that represent the assumptions that must be satis�ed before enactment

of the activity can begin (that is, preconditions), the internal structure of the

activity (which may be primitive | meaning that the implementation is

left to the enactor | or some explicit control structure), and a sequence of

results (one or more of which may be designated by the enactor as the results

of the enacted activity) each of which consists of a set of policies that represent

assertions about the resulting state of the activity (that is, postconditions), and

a set of of policies that must be eventually satis�ed by enactors of the process

(that is, obligations). Consider the example activity description.

Because of the preconditions, postconditions and obligations, there are de-

pendencies among the de�ned activities in a process model that yield a partial-

ordering of those activities. Preconditions and obligations must be satis�ed by

some set of state and postconditions provide that state. Thus there is an im-

plicit ordering, an implicit control, that is exerted on the activities that are

enacted within a particular model. An activity instantiation (such as Determine-

Dependencies) can only be enacted when its assumptions are satis�ed. Until that

happens, the activity cannot proceed no matter what explicit control structure

it may be embedded in.

This partial order is the fundamental global form of enactment control.

3 Arbitrary, External Locus of Control

There are three di�erent kinds of user-directed (and apparently, arbitrary) enact-

ment control: activity elaboration, state restoration and enactment scheduling.

The �rst is considered to be normal enactment control; the second is consid-

ered to be abnormal enactment control (that is, it is the handling of exceptional

circumstances by moving the process state to some | possibly previous | con-

sistent state) by the human enactor; the third is an external constraint on either

the beginning or the completion of an enactment.

In the example, we have a detailed activity structure speci�ed for the integra-

tion activity. Given that our approach is to underspecify rather than overspecify

activity structures, activity structures will range from the primitive structure

(which must be elaborated at enactment time) through a variety of incompletely

activity Integrate ()

preconditions f Release-Approved(Tool-Release-Board) g
f
for each tool t in ftool t j submitted(t) g
until Current-Time == Deadline:

<

Determine-Dependencies(t, dependencies) ,

let testset' = testset + t ,

Build(testset', result) ,
(result == false, tool-rejected(t)) ,

(result == true,

<

< for each person P

in fperson p j owner[t1] == p & t1 in dependencies g:
bind Evaluate(t, t1) to P

> ,

Await-Acceptance/Rejection(t)

>

)

>

g
results

<

(postconditions f
approvedset = f tool t j tool-approved(t) g,
exportset = exportset + approvedset,

tools-released(exportset) g ,
obligations f g

) ,

(postconditions f rejectset = f tool t j tool-rejected(t) g g ,
obligations f for each tool t in reject-set: modify-tool(t) g

)

>

speci�ed structures to completely speci�ed structures. Since the general intent

is for an incomplete structure rather than a complete one, the human enactor

will interact heavily with the support environment to elaborate the incomplete

activity structures by means of the various Intermediate environment commands

and the various language control statements.

The interaction between the enactor and the internal and implicit partial-

ordering of activities is a direct one. The primary purpose of the enactor is to

achieve one or more results within a given activity. One way to achieve those

results is to backchain through the activity dependency graph to �nd activities

that will produce the desired results. This backchaining results in a non-classical

transformation of an incomplete activity structure into a complete one.

For those activities that are independent and also for those activities that

have been enabled, the enactor is free �rst to choose which activities to enact

and in which order. Their freedom is constrained only by the implicit priority

de�ned by the speci�c schedule applied to those activities. For those activities

that are in the process of enactment, the enactor is free to multiplex between

them arbitrarily by means of activity suspension and resumption. It should be

noted, however, that mere caprice is not likely to result in an e�ective or e�cient

process.

It may well be the case that because of the incompatible dependencies or

conicting enactments, a particular activity may get permanently stalled (or, if

you will, starved or deadlocked). Often the way to recover from this situation

is to change the current state of the process by enacting various environmental

commands or recovery activities.

Again, the interaction between this form of control and the implicit partial-

order control is a direct one. The recoverer must understand those dependencies

and, via recovery activities, adjust the process state to some state in which

progress can be made.

4 Explicit, Internal Locus of Control

Explicit enactment control is provided in Interact via basic enactment com-

mands, enactment control, and control generation. Basic enactment commands

are the units of work within an activity and are performed either by the human, a

tool or the Intermediate support environment. Enactment control indicates how

these individual enactment commands will be executed in relation to each other.

The control generation mechanisms enable one to generate families of structures

with a basic structure that is individuated either statically with distinct argu-

ments or dynamically with di�erent values. We see illustrations of each of these

in the example.

4.1 Enactment Commands

There are three kinds of enactment commands: local equations, activity instanti-

ations, and Intermediate commands. Local equations enable the modeler to bind

values to names. On the one hand, this enables one to construct or deconstruct

values for local names used only within the context of the local equation | that

is, import values. On the other hand, this enables one to construct or deconstruct

values for global names | that is export values. The constructive aspects of lo-

cal equations enable one to construct larger structures out of component parts;

the deconstructive aspects enable one to extract desired pieces from complex

structures.

The local variable, testset', is de�ned and and assigned its value of the current

test set with the addition of the particular tool t.

Activity instantiations are analogous to function or procedure calls: the ac-

tivity is named and given a set of arguments. However, as we mentioned in the

section on implicit control, the activity cannot be enacted until the assumed

policies have been satis�ed. Once the assumptions have been satis�ed, the ac-

tivity can be enacted. If the activity is bound to a tool, then that tool will be

executed by the support environment; if the activity is bound to a human, then

it is the responsibility of the that human to enact that activity.

Determine-Dependencies and Build are two examples where the instantiated

activities are bound to tools. Evaluate, however, is bound to the appropriate

owners of tools that are dependent on the tool to be evaluated.

An Intermediate command is one of the basic underlying process enactment

and inspection primitives (such as binding commands, event commands, eval,

etc.). These commands are the primitives for process de�nition, administration

and enactment. We leave the discussion of them to a later paper.

4.2 Enactment Control

There are three enactment control structures: guarded enactment, sequential

enactment and arbitrary enactment. Guarded enactment is represented by a

tuple in which the �rst element in the tuple is the guard and the second is

the enactment statement (which is either an enactment command, enactment

control or control generation statement).

We test the results of the the build activity with two guarded enactment

statements: the �rst speci�es what to do if the build fails, the second speci�es

what to to if the build succeeds.

Sequential enactment is denoted by the structure < . . . > | literally, this is

a sequence of enactment statements which are to be executed in sequence. Note,

however, that the semantics of the individual enactment statements must be

observed. In particular, if the assumptions of an activity have not been satis�ed,

the execution sequence will not proceed further until that does occur. Thus some

other activity or set of activities will eventually have to be enacted to satisfy the

assumptions of the stalled activity.

We have three sequential enactments in the example. The �rst is the sequence

of steps that applies to each submitted tool. The second is the sequence of steps

that applies when the build succeeds. The third, we defer to the discussion of

control generation.

Arbitrary enactment is denoted by the structure f . . . g . Where in sets

of data, we have no particular ordering of that data, so in sets of enactment

statements, we have no particular ordering of those statements. The enactor

(whether it is a human, a tool, or the support environment in the case of local

equations and primitive commands) is free to select the order arbitrarily do-

ing as much concurrently as is desired. Remember, however, that activities can

only proceed when their assumptions have been satis�ed. The de�ned activities'

partial ordering takes precedence over the arbitrary ordering.

We have a single arbitrary enactment statement in the example. It is coupled

with a set generation statement which we will discuss in the next section. In this

case, the enactments generated are to be done in arbitrary order. It is likely that

each of the enactments generated is independent of the others and can be done

in truly arbitrary order | concurrently, randomly, etc.

Note that we have combined sequential and arbitrary enactments: we have

an arbitrary enactment of sequences as the basic structure of the activity. We

could just as easily have had a sequence of arbitrary enactments. Note that a

arbitrary enactment of arbitrary enactments just reduces to a single arbitrary

enactment. That is,

f fA, Bg fC, Dg g is e�ectively f A, B, C, D g.

4.3 Control Generation

Given the set orientation of Interact, a useful thing to be able to do is to apply

some enactment to each member of the set. We do that with the set gener-

ation command. This command generates an enactment for each member of

the speci�ed set. The order in which the enactments are done depends on the

encompassing enactment control.

We have two such instances in the example. The �rst applies the sequence

enactment to each submitted tool. Note that this set generation command is

contained within the arbitrary enactment command: the evaluation sequences for

each tool may be done arbitrarily (though, of course, the sequences themselves

must be done in sequence). Note also that we have a termination expression

that allows the set generation to continue until the deadline has been reached.

As additional tools are submitted (that is, as the set of tools satisfying the policy

tool-submitted gets new members), the evaluation sequence is applied to those

newly submitted tools.

In the second instance, we have an illustration of the set generation com-

mand within a sequence enactment. This produces an enactment sequence that

is analogous to iteration (though strictly speaking, it is iteration unrolled). An

instantiation of the evaluation activity is bound to each person who owns a tool

dependent on the particular submitted tool. Note that it is the binding of the

activity not the enactment of the activity itself that is done in sequence. 1 The

actual enactment of each of those instantiated activities takes place outside the

scope of this activity and is subject to the standard partial ordering rules.

5 Summary

We have illustrated three loci of enactment control: internal and implicit, exter-

nal and arbitrary, and internal and explicit. The partial order inherent in the

precondition and obligation dependencies is paramount. It is fundamental in the

1 Note that we could just have easily done the binding in arbitrary order | that is,

enclosed this part of the activity implementation in f g instead of < >. We enclosed

it in a sequence here for pedagogical reasons.

sense of global control of activity enactment. Within this global control, the hu-

man has a great degree of latitude to choose which of the prescribed activities

to enact as long as it is consistent with the modeled enactment ordering.

References

1. Perry, Dewayne E.: Policy and Product-Directed Process Instantiation. Proceedings

of the 6th International Software Process Workshop, 28-31 October 1990, Hakodate,

Japan.
2. Perry, Dewayne E.: Policy-Directed Coordination and Cooperation, Proceedings of

the 7th International Software Process Workshop, October 1991, Yountville CA.

3. Perry, Dewayne E.: Humans in the Process: Architectural Implications, Proceedings
of the 8th International Software Process Workshop, March 1993, Schloss Dagstuhl,

Germany.

This article was processed using the LaTEX macro package with LLNCS style

