
Evaluating Workow and Process Automation

in Wide-Area Software Development

D. E. Perry A. Porter?

Software Production Research Dept Computer Science Dept
Bell Laboratories University of Maryland

Murray Hill NJ 07974 College Park, Maryland 20742
dep@bell-labs.com aporter@cs.umd.edu

L. G. Votta M. W. Wade
Software Production Research Dept Quality Management Group

Bell Laboratories Lucent Technologies Inc
Naperville, Illinois 60566 Naperville, Illinois 60566
votta@bell-labs.com michaelwwade@lucent.com

Most software engineering research has focused on improving the quality or
reducing the cost of software, but has ignored the need to reduce cycle time
(the calendar time needed to develop and distribute a product.) Because a short
time-to-market can be a signi�cant advantage in rapidly changing and highly
competitive markets, many companies are demanding tools and practices that
build quality software, faster.

To help understand the importance of reducing cycle time, consider the soft-
ware inspection process. Although this is an expensive process, its cost is often
justi�ed on the grounds that, since the longer a defect remains in the system the
more expensive it is to repair, the cost of �nding defects today must be less than
the cost of repairing them in the future. However, this argument is incomplete
because inspections a�ect cycle time far more negatively than has been realized.

For example, we have observed that a typical release of the 5ESS switch (�
.5M lines of added code) can require roughly 1500 inspections, each with four or
more participants. For this size feature, our research indicates that inspections
alone increase cycle time 10 weeks { from 60 to 70.)

Many people believe that workow and process automation tools can signif-
icantly reduce cycle-time. We share this belief, but have some reservations since
our previous research suggests that building quality software products rapidly
will require much more than just new technology; it will also require careful
analysis of the software processes in which the technology is used.

To study this issue we've developed a workow tool that allows distributed
groups to execute a wide variety of software inspection processes. More im-
portantly, we are using this technology, in a live software development project,

? This work is supported in part by a National Science Foundation Faculty Early

Career Development Award, CCR-9501354.



to support controlled experiments exploring how process structure a�ects cycle
time.

In the next Sections we summarize some of our previous research, describe
HyperCode, a workow tool to support software inspection across physically-
distributed development groups, present an controlled experiment we are con-
ducting on a live software development project to understand how this technol-
ogy a�ects cycle time, and discuss some preliminary observations drawn from
our work.

1 Preliminary Research

Several inspection methods have recently been proposed. Although, each method
claims to improve e�ectiveness, their costs haven't been adequately considered.
We hypothesized that many of these methods increase e�ectiveness, but only
by signi�cantly increasing inspection cycle time. Therefore, we evaluated this
hypothesis with a controlled experiment in a live development project [2].

For each inspection performed during the project, we randomly assigned 3
independent variables: (1) the number of reviewers on each inspection team (1,
2 or 4), (2) the number of teams inspecting the code unit (1 or 2), and (3)
the requirement that defects be repaired between the �rst and second team's
inspections. The reviewers for each inspection were randomly selected without
replacement from a pool of 11 experienced software developers.

The dependent variables for each inspection included inspection cycle time
(elapsed time to completion), total e�ort, and the observed defect detection rate.

With respect to workow and process automation, we made two observations.

{ workow technology may reduce several ine�ciencies in the inspection pro-
cess, but

{ relatively straightforward changes to the inspection process can have dra-
matic, negative e�ects on cycle time.

Since workow and process automation tools often introduce process changes
{ sometimes subtly, sometimes overtly { it is essential to understand how dif-
ferent process structures a�ect cycle time. That is, without rigorous analysis we
can't simply assume that these tools will provide the hoped for bene�ts.

2 Workow and Process Automation in Wide-Area

Software Development

To eliminate defects, many organizations use an iterative, three-step inspection
procedure: Preparation, Collection, Repair[1]. First, a team of reviewers reads
the artifact, detecting as many defects as possible. Next, these newly discovered
defects are collected, usually at a team meeting. They are then sent to the
artifact's author for repair. Under some conditions the entire process may be
repeated one or more times.



Although conceptually simple, this description hides a number of painful de-
tails. To conduct a code inspection at Lucent Technologies, the unit's author
must �rst extract the current version and its design documentation from one of
several con�guration management systems (even at a single Lucent Technologies
site several systems are often used.) Next, reviewers are invited to participate.
Once the review team is assembled, individual roles are assigned. For Prepa-
ration these roles indicate the technical areas each reviewer should concentrate
on. For example, requirements conformance, hardware/software interface consis-
tency, or testability. For the Collection meeting these roles often indicate meeting
responsibilities. For instance, the moderator leads the meeting and ensures that
all repairs are completed, the reader directs the review of the code unit, and the
scribe records the inspection's results.

Next the author distributes inspection materials to all participants and sched-
ules the Collection meeting. Once the reviewers have the inspection materials
they can do Preparation. During this phase the reviewers analyze the artifact
keeping a record of all issues they uncover. After Preparation the team assembles
for the Collection meeting. If the reviewers and/or the author are from di�erent
locations, then some participants will have to travel or a conference call will
take place (this depends on the complexity and criticality of the code being
inspected).

During the Collection meeting all issues discovered by the reviewers during
Preparation are discussed and new issues are raised. Each issue that must be
�xed is recorded and after the Collection meeting, this list and all repair records
are archived to meet ISO-9000 quality reporting requirements.

2.1 HyperCode

Workow and process automation tools can improve inspections in several ways.

{ Encouraging concurrent design and development. When multiple activities
or participants must be synchronized or work sequentially, long delays can
be inserted into the process.

{ Reducing process and paper overhead. When information is stored or manip-
ulated o�-line there is often a signi�cant overhead due to document main-
tenance, retrieval, and dissemination. For example, we observed that a sub-
stantial portion of inspection cycle time is spent copying the artifact for
each reviewer, preparing lists of the defects found, collating these lists, and
entering the results of the inspection into online con�guration management
system.

{ Supporting physically distributed development teams. More than ever be-
fore, software systems are developed using third-party vendors and/or ge-
ographically separated development teams. Two problems that can occur
are that meetings must be scheduled within small, mutually convenient time
windows, and that inconsistencies can go unnoticed for long periods because
communication is limited.



Consequently, we developed the HyperCode collaborative inspection tool.
This system is essentially a set of cgi scripts used in conjunction with the
Netscape World Wide Web browser plus an API to two local con�guration man-
agement systems. The system supports: (1) security, (2) document preparation,
(3) process administration, (4) document annotation, and (5) archiving.

Security. Users are provided with web ID's and passwords so that the system
can control access to documents.

Document Preparation. When an inspection is necessary the code unit's author
uses a browser to select the current version of the code and its documentation
from the con�guration management system. HyperCode then converts the text
to HTML.

Process Administration. The code unit's author uses a point-and-click interface
to select reviewers from a pool of available reviewers. He or she can also assign
various roles to the reviewers. These roles are later used to guide the system's
behavior. For example, the team moderator is the only reviewer who can delete
issues. Also, in the repair phase, only the author can "close" an issue. Once
participants have been chosen, the system sends email to the participants. E-
mail is then used to negotiate attendance and scheduling.

Document Annotation. During Preparation reviewers can check out the inspec-
tion package and make annotations to any portion of the artifact. When annota-
tions are made, they are linked into the artifact and are available to the author
and other reviewers at that time. Any number of reviewers may access the ar-
tifact, from any location within the Lucent Technologies �rewall. Reviewers can
also comment on the annotations made by other reviewers. Virtual Collection
meetings are conducted by asking each reviewer to vote on each issue.

Archiving. Because this Lucent Technologies site adheres to ISO-9000 standards
many of the inspection materials must be archived for quality reporting and au-
diting purposes. Many of these records must be signed by management personnel
and archived in paper format. The HyperCode system automatically creates pa-
per copies of the records it maintains on-line. These can be printed out, signed
by the appropriate parties and archived.

Although HyperCode duplicates some of the the functionality of several ex-
isting systems, it nevertheless provides several unique bene�ts. (1) Minimal re-
source consumption. HyperCode runs over Netscape. Consequently, it can be
used on a wide variety of machines, requires no special hardware and can be used
free of charge. (2) ISO-9000 aware. HyperCode generates all necessary ISO-9000
records. (3) Measurement hooks. Allows us to automatically record inspection
activities and recreates much of the data needed in out process experiments. (4)
Consistent with the look and feel of the paper process. Users who prefer paper
can print all documents.



3 The Experiment

We are currently using HyperCode to support software inspections. Like other
workow tools, HyperCode skirts many of the constraints inherent in the tradi-
tional, o�-line process.

For example, once an issue is raised all reviewers can see it. With the tra-
ditional process each reviewer's issues remain unseen by others until a team
meeting is held. Consequently, a large portion of inspection meetings is spent
divulging, explaining and discussing each issue. HyperCode allows developers to
discuss issues without face-to-face meetings.

3.1 Hypotheses

This is just one example of how workow and process automation tools can
change a software development process, and possibly upset the cost-bene�t trade-
o�s that justi�ed the process' original structure. With respect to software in-
spection we hypothesize that HyperCode inspections will di�er from traditional
inspections in several ways.

{ HyperCode inspections will have (1) shorter cycle-time, (2) require no more
human e�ort, (3) incur fewer indirect costs (e.g., travel, conference calls,
photocopying), and (4) be no less e�ective than traditional inspections.

{ Inspections with meetings will have (1) longer cycle-time, (2) require more
human e�ort, (3) incur more indirect costs, and (4) be no more e�ective than
meeting-less inspections.

{ If the reviewers and the author of a code unit are geographically distributed
then, (1) cycle-time, (2) e�ort, and (3) indirect costs will be greater, and (4)
e�ectiveness will be lower than they will when all inspection participants are
co-located.

To evaluate these hypotheses we designed and are conducting a controlled
experiment. Our purpose is to compare the tradeo�s between on-line and o�-line
inspections when di�erent inspection processes are used.

3.2 Experimental Setting

We are currently conducting this experiment at Lucent Technologies on a project
that is developing cellular phone services. The development team consists of over
20 persons spread across two sites, one in Illinois (IH) and another in New Jersey
(WH). This project, which involves adding several dozen features (new services)
to an existing telephony system, began coding in June 1995 and will perform an
estimated 200 inspections by Dec 1996.



3.3 Experimental Design

VariablesThe experiment manipulates three independent variables: (1) the
method used for reviewer preparation (HyperCode or traditional), (2) the method
used to collect issues (team meeting or deposition), (3) the location of author
and reviewers (reviewers can be at IH, WH, or both locations; the author can
be at IH or WH).

For each inspection we measure several dependent variables. (1) cycle time,
(2) inspection e�ort (person-hours), (3) support costs (travel, facilities, con-
ference calls, etc.), (4) observed defect detection rate. We also capture repair
statistics for each defect.

Design This experiment uses a 22 � 6 randomized block design. When a new
feature is ready to be inspected, the inspection method is chosen on a random
basis. Choosing a treatment involves randomly selecting the reviewer preparation
and issue collection methods and then randomly selecting reviewers without
replacement from the reviewer pool.

4 Summary

The e�ectiveness of any tool, whether workow or not depends on the how well it
co-exists with the processes it supports. If it is congruent with those processes,
then there's a chance that it enhance them. If not then it may be a severe
hindrance.

HyperCode automates several aspects of the current manual process and so is
prima facae consistent with the process it supports. In fact, the initial response
from users has so been overwhelmingly positive that it's di�cult to constrain the
tool's use to �t our experimental design. We attribute this response to two things:
�rst, the elimination of the paper as the medium, and second, the elimination
of synchronous interactions.

We also notice, however, scheduling di�culties, physical distance between
reviewers, and physical distance between developers who must negotiate the
repair of defects appears to a�ect the bene�ts of the tool. The exact extent to
which this tool works, therefore, must be assessed via our rigorous experiments.

References

1. \IEEE Standard for software reviews and audits". IEEE Std 1028-1988, Soft. Eng.

Tech. Comm. of the IEEE Computer Society, 1989.

2. Adam A. Porter and Lawrence G. Votta and Harvey P. Siy and Carol A. Toman.

"An Experiment to Assess the Cost-Bene�ts of Code Inspections in Large Scale

Software Development". The Third International Symposium on the Foundations

of Software Engineering"Washington, D.C., October 1995.

This article was processed using the LaTEX macro package with LLNCS style


