
Implications of Evolution Metrics on Software Maintenance

M M Lehman
Department of Computing

Imperial College
London SW7 2BZ

tel: +44 (0)171 594 8214
mml@doc.ic.ac.uk

D E Perry
Bell Laboratories,

Murray Hill, NJ 07974
tel:+1 908 582 2529

dep@research.bell-labs.com

J F Ramil
Department of Computing

Imperial College
London SW7 2BZ

tel: +44 (0)171 594 8216
jcf1@doc.ic.ac.uk

ABSTRACT
The FEAST/1 project is studying the impact of feedbackon
E-type software evolution, and a hypothesis which
attributes the failure to achieve major software process
improvement, in part, to overlooking its role. Amongst its
activities the FEAST/1 project [leh97] is studying metrics
of the evolution of several industrial software systems,
ranging from a financial transaction system to a very large
real time system. When comparing evolution metrics from
so widely different systems, similarities emerge which
support conclusions reached in a 1970s study of OS/360
evolution, enabling their further refinement and suggesting
that, both metrics and conclusions derived from them are
relevant and should be taken into consideration for
successful software maintenance.

Keywords
Software:- maintenance, evolution, metrics, dynamics,
feedback, improvement; Lehman's laws

1 Feedback in the Software Process
Some years ago one of the present authors wondered why
major sustained improvement of the industrial software
process is so difficult to attain. No sooner asked then an
answer came to mind. He recalled 1970's work identifying
the software process for E-type systems as a multi-level
multi-loop feedback system with, in general, both positive
and negative feedback mechanisms [leh85-cs5,12]1. Now
positive feedback tends to cause growth and process speed
up. Negative feedback, on the other hand, tends to stabilise
a system or process, constraining the external impact of
changes to forward path elements. The software process
itself can be visualised as encompassing a major feedback
loop which starts off in ab initio development with a non
trivial application concept and ends up at the first and
subsequent iterations with a version of an operational
system. A gap (partly due to invalidation of assumptions
and partly due to learning and increasing ambition, market
competition, etc) appears between the functionality of each
version of the operational system (when eventually
delivered) and the application concept [leh98b]. Filling this
gap through change and enhancement represents a source
of unending software maintenance, that is the sucessive

iterations at a given rate on the software process major
feedback loop [leh98b].

Software process improvement has always focussed on
forward path mechanisms: the introduction of new process
steps, better languages, improved methods and tools and so
on. Such changes will be contained within feedback loops,
such as those monitoring and controlling product quality,
resource usage and the rate of progress. Other feedback
mechanisms might direct projects and processes towards
organisational goals or provide the checks and balances
required to ensure a successful organisation.

As a software organisation evolves, feedback controls will
be set up to ensure, for example, desire quality levels,
timely delivery, organisational stability and progress to
global goals. The external impact of changes to forward
path mechanisms within negative feedback loops will then
be constrained and yield less benefit than might be
expected on the basis of local assessment. Thus, changes to
feedback mechanisms, such as the use of inspections, rapid
prototyping or evolutionary development for example,
should be important ingredients of process improvement.

2 The FEAST Hypothesis
The FEAST hypothesis (Feedback, Evolution And Software
Technology) first formulated in 1994 [leh94], encapsulates
these issues. It may be stated as:
As complex feedback systems, E-type software processes
evolve strong system dynamics and a tendency towards
global stability as exhibited by feedback systems
Sub hypotheses include:

I Software evolution process for E-type systems
constitutes a complex feedback system

II Such feedback is likely to constrain benefits derived
from forward path changes,

III Major process improvement requires attention to
feedback mechanisms and process dynamics

3 The FEAST/1 Project
The hypothesis was initially explored by a core group2 and
discussed in a series of workshops [leh96a,fea84/5]. The

17/4/98, 6:03 pm - 1 - mml573[Research Paper]

1 To conserve space all papers included in [leh85] are referenced
by their chapter number in that book

2 Professors MM Lehman, V Stenning (Imperial College) and
WM Turski (Warsaw U,) and Dr DE Perry (Bell Labs-Lucent)

FEAST/1 research project, initiated in 1996 [leh96b] has
been seeking tangible supporting evidence from data on
active industrial evolution processes. Black box(metric)
analysis is being undertaken and white box (system
dynamics) models are being developed and analysed.
Findings have been reported [leh96,97,98a,b,wer98]

4 Laws of Software Evolution
Recognition of the software evolution phenomenon and its
investigation arose initially from a study of the IBM
programming process [leh85-c3]. Various attributes of
successive releases of OS/360, as exemplified by fig. 1,
were examined. The figure shows that system growth over
26 releases (identified by asequence number, rsn,) follows
a smooth long range trend, with a superimposed ripple and
a region of instability or chaotic behaviour. Taken together,
these phenomena suggested the feedback-system-like
properties mentioned above.

OS/360

0

1000

2000

3000

4000

5000

6000

7000

8000

0 5 10 15 20 25

Growth Trend

RSN

Size in Modules

Fig. 1 IBM OS/360 growth trend

The essence of the OS/360 observations and interpretation
were captured in eight Laws of Software Evolution [leh85-
cs7,12,19, 96c] (see table A.1) - laws because they related
to social, managerial and organisational, not technical,
phenomena. Some, however, considered the data source
tainted reflecting 1960/70s technology applied in a non
typical (ie. IBM) development environment to the evolution
of a, for its time, non typical system. The observed
behaviour and laws derived from it were, therefore,
unlikely to be widely applicable [law82]. But the laws were
supported by subsequent work [kit82,leh85-c12,96d] and
by the metrics gathered under the FEAST/1 project, as
exemplified in fig. 2.

Figs. 1 and 2 show the growth trend of the earliest and most
recently received data respectively. Despite a two decade
interval between their creation and an order of magnitude
difference in size there is sufficient similarity between
these growth patterns to suggest an underlying common
phenomenon. Similar pattern were observed in four other
systems for which data was obtained in the 1970s [leh77,8,
leh85, ch. 12] and for three now being studied. These
systems address different application areas, cover a wide
range of sizes, were/are being evolved in quite different

development domains and are used in widely different
contexts. The observed similarities are, therefore, unlikely
to be due to chance. Their common patterns strengthens
confidence in the validity of the original conclusions.

In observationals studies such as the present one,
confidence may be increased in at least two ways.
Observation of similarity in the behaviour of some
evolution parameter across a number systems, increases
confidence in laws that encapsulate the common behaviour.
The more different the systems, the development or the
application domains the greater the impact. Concentration
on data sets of an individual system and comparison of its
behaviour with that predicted by the laws is equally
confidence building. Success with either approach
strengthens confidence; failure leads to modification or
rejection. Both are necessary to increase understanding and
control of software evolution.

Lucent Tech. Sys 1

0

20000

40000

60000

80000

100000

120000

140000

0 3 6 9 12 15

 Growth Trend

RSN

 Size in Modules

Fig. 2 Lucent Technologies system growth trend

The Logica FW financial transaction system study [tur96,
leh96d,97a,b] exemplifies the observational case study
approach. It suggests that FW evolution is largely
consistent with at least five of the eight laws. The other
three are not contradicted. There is simply no
evidence[leh96c]. Here too a consistent picture is emerging.

Addressing the investigation of system evolution by pure
experimentation has not been totally discarded, although
not found feasible yet. Calibrated system dynamics models
may offer an alternative to experimentation [leh98a,wer98].

4 Metrics of Software Evolution
A list of metrics and indicators currently being considered
in FEAST/1 is shown in table 1. This list is in no way
complete. For example, it does not include derived
indicators obtained either as a function of one or more
indicators. Alternative surrogate measures which convey
the underlying attributes (size, activity, effort, etc) in the
evolution of a particular E-type program may be defined.
An investigator interested in the software evolution process
tries to get a picture of several years of E-type system
history from records and data stored in historic data bases,
configuration management systems or similar support tools
which were defined for other purposes [mcg79, roc75,

17/4/98, 6:03 pm - 2 - mml573[Research Paper]

tus87]. One must live and work with the available measures
and apply an analysis procedure that can be generalised
across systems. This apparently lack of rigour, when
compared with grass root software metrics programs is a
fact of life in software evolution studies and it is one of the
reasons to consider the relationship between the actual
metrics and the attributes as fuzzy. It may also explain why
an appropriate way of encapsulating findings is in linguistic
statements such as those of the laws. Where more than one
measure is available for the same attribute on a specific
system one may wish to determine whether, at some level
of detail both 'tell the same story'.

Release sequence number - rsn

Size of system - subsystems, modules, files, etc.

Elements handled - subsystems, modules, files, etc.

Elements added - subsystems, modules, files, etc.

Elements changed - subsystems, modules, files, etc.

Elements deleted - subsystems, modules, files, etc.

Element handlings - subsystems, modules, files, etc.

Release interval or general availability (G.A.) date

Effort applied - in appropriate units

Errors detected before and after G.A.- per release

Errors fixed before and after G.A.- per release

Table 1 FEAST/1 Metrics of Software Evolution 3

Measures based on rsn as a pseudo-time indicator have
proven consistently useful in both the early and current
software evolution studies [leh85,97]. The age, absolute or
relative, of a system at the time of release is, however,
sometimes more appropriate, in particular when drastic
changes in release intervals have ocurred. As previously
discussed[leh85,97b], module counts (or related measures
eg, files, etc.) offer a number of advantages (in the context
of software evolution studies) over other measures, such as
function points and, in particular that they are always
available in historic data bases and so provide a potential
for cross system comparison [leh97b].

The metric elementsor modules handled, may be taken as a
measure of the work done in developing release "i". It is
widely defined as the sum of the number of elements or
modules created and those changed in the course of that
work. Changed modules are those differing in, at least, one
non-comment line to the equivalent module in the previous
version. Deletions may or may not be included. Issues that
arise from the use of modules handled include the
definition for modules used by each development
environments, the stability of those definitions over time,
the spread in the extent of the changes to individual
modules and the variability of the portion of the system
being handled at each release. The number or fraction of
modules being deleted may also be significant at some
point in the system's history.

An complementary measure is described by the term
handlings. This measure differs from handles in that a
module to which "n" (independent) changes are made is
counted n times to determine the count. A module change is
completed (an a handling counted) when an independent
task such as a bug fix or the implementation of an
enhancement has been performed. Handlings is not,
however, a widely available count.

A top-down approach for metrics definition have been
followed in the FEAST/1 studies. For instance, the size of
a system may be split when needed or justified in size of
certain sub-systems, or size of certain type of code (eg
automatically generated modules from those which require
intellectual effort). As a general guideline when starting a
metrics program it is recommended to keep the number of
different metrics to a minimum, so that it is possible to
characterise the evolution of a given system. In general,
metrics such as those which are dependent on a certain
process definition should be avoided. They will only
convey some meaning during the period under which a
particular process model was being enacted.

Various problems with the metrics are: changes in
technologies (language) or practices which may change the
interpretation of the metrics, parallel work which may
affect consistency and applicability of the release work
concept, and drastic changes in release interval.

In addition to the source code (and the process of evolving
the source code) other models of the application could also
be measured and analysed. Metrics could be applied inter
alia to the specification documents, requirements, high
level designs and low level designs. Size could be
measured in number of paragraphs, number of atomic
sentences, number of components or statements, etc.
Management units such as change documents or
modification requests could also be counted and
accumulated by release under the assumption that given a
larger number, individual units can be considered
homogeneous.

Because of the declining costs of storage, it appears to be
more appropriate to establish an electronic archive with all
the generated releases of the source code and related
application models with metric purposes in mind, than
storing summarised data only. Summarisation implies
assumptions which may become invalid or forgotten. A
case study of software evolution may begin with a set of
metrics which later on may need to be redefined or refined.
Access to raw data guarantees that new more appropriate
metrics could be always defined and extrated.

5 Results to date
Paucity in the number of releases (in all of the cases less
than 30) have hindered the application of standard
statistical time series techniques to the FEAST/1 data.
Nevertheless, analysis techniques which have been applied
to FEAST/1 data are of the simplest and have yielded some
results. They include visual inspection of the plots of data
as a function of rsn or of the age of system (whatever more

17/4/98, 6:03 pm - 3 - mml573[Research Paper]

3 G.A.: general availability

appropriate) to assess general trends, to identify maxima
and minima (these provide an idea of process capacity).
General trends have been obtained by performing linear
least squares fits and by assessing the sign of the resulting
slopes.

Recent publications have discussed the black box results
obtained to date [tur96, leh97b,leh98b]. Similarities can be
perceived from the evolutionary behaviour and trends of
the systems currently being studied. Results in connection
with the laws are summarised in table A.1. Next section
shows an example of the analysis focused on only some
aspects of system evolution.

5.1 Trends of Total Size and Portion not Touched
Fig. 3-6 show both, the total size of a system in modules
and the part of the system not touched at each release. Both
measures are expressed as a percentage of the largest size
achieved by the system. Linear least square models have
been fitted to highlight the dominant trend in each series.

All of the plots support the sixth law (continuing growth).
The plots also provide, in one way or another, support for
the first, second, third, fourth and eighth law. The
interpretation is analogous to the already published for
Logica FW and the interested reader is referred to
[leh97b].

When comparing the plots, OS/360 shows significantly
different slopes for the linear models fitted to the total size
(3.03), on one side, and to the part of the system not
touched (1.13), on the other. That is, in OS/360 the portion
of the system being touched (ie added or modified) at each
release increased, ending up with a period of instability
from rsn 21 onwards. On the contrary, in the other three
systems (which display a stable evolution) the linear
models (major component of each trend) display
approximately parallel lines, indicating, on average, that a
constant portion of the system being manipulated at each
release cycle. This finding is consistent with early
conclusions and with the hypothesis that an evolving
system develops an inherent system dynamics and
invariances. This happens in a way which is independent
from the day to day managers' and developers' decisions.
Again, the similarities between these parallel linear models
in three different systems suggest an underlying common
phenomenon.

5.2 Trends of the Incremental Growth
A linear model fitted to the incremental growth [leh85]
over releases displays a positive slope only in case of
OS/360 and negative in the three other cases (plots have
been omitted). This suggest that on average, a positive but
decreasing incremental growth can be the norm and not a
constant incremental growth as originally suggested
[leh85]. A positive and increasing incremental growth may,
therefore, be discarded.

5.3 Trends of Changed and Added Modules
Initial findings seem to indicate that at some point in the
lifecycle the number of changed modules per release is

OS/360

y = 3.03x + 8.37

y = 1.13x + 12.73

0

20

40

60

80

100

0 5 10 15 20 25

RSN

Percentage

Total Size of System

Part of System not Touched

ICL VME Kernel

y = 3.48x - 1.44

y = 3.46x + 10.22

20

40

60

80

100

9 14 19 24 29
RSN

Percentage

Total Size of System

Part of System not Touched

Lucent Tech. Sys 1

y = 2.92x + 4

y = 3.37x + 49.80

20

40

60

80

100

0 5 10 15

RSN

Percentage

Part of System not Touched

Total Size of System

Lucent Tech. Sys 2

y = 5.55x + 26.44

y = 5.29x + 8.05

0

20

40

60

80

100

0 2 4 6 8 10 12 14

RSN

Percentage

Part of System not Touched

Total Size of System

Fig. 3,4,5 and 6 Trends of the total system size
and the portion of system not touched

17/4/98, 6:03 pm - 4 - mml573[Research Paper]

greater than the number of added modules. Moreover
the slope of a linear model fitted to the number of added
modules over releases is negative or close to zero for the
four systems mentioned above. On the other hand, a linear
model fitted to changed modules over release show slopes
which are positive in some cases and negative in others. In
all the cases the slope of changed modules over releases is
greater than the corresponding slope for added modules.
This regularity across systems await appropriate
interpretation.

6 Implications on Software Maintenance
It has been shown how simple analysis techniques (linear
models) applied to a relative small number of metrics can
yield insight and understanding intra and across different
projects and characterise aspects of the software evolution
and its stability. Collection and analysis of metrics of
software evolution offer a number of other advantages.
They provise a base for the building forecasting models.
They facilitate the estimation of the process capacity
(estimated from historic maxima and minima) which
suggest a safety margin for smooth evolution. They provide
a means to assess effects of process improvements policies
on global long term behaviour. (FEAST hypothesis
suggests that local process improvement will not alter
global process characteristics). Moreover, the suggested
metrics offer means for the calibration of system dynamic
models for policy evaluation [leh98a, wer98].

The way forward requires more data on more systems in a
variety of application and implementation domains.. As
already observed, results to date have led to further support
but also to restatement of the laws. As more data becomes
available, further revision and more precise formulation
may be necessary.

This study has complementary aspects. On the one hand, it
provides a conceptual framework for and elements of a
theory for the software process and its improvement. It
demonstrates that software process modelling must more
extensively and consistently reflect the feedback nature of
both the software process in its technical aspects and the
global business process, reflecting the impact of feedback
control. But the metrics are also of practical importance.
They provide a systematic basis for developing and
controlling a systematic system evolution strategy and
tactic and in identifying tools to support this process.

7 Final Remarks
Following the original software process study [leh85, ch.2]
and its follow up [leh85, ch. 5] the study of software
evolution was advanced during the 1970s by analysis of the
behavioural patterns and trends of system and process
parameters across a range of systems and organisations
[leh85]. This led to formulation of the laws of software
evolution (see appendix), to the development of a degree of
confidence in their validity and, more recently, to the
FEAST hypothesis and the FEAST/1 project. Initial
findings derived from data on the Logica FW system, have
reproduced and extended the earlier conclusions [leh97b].
The present paper provides orthogonal confirmation by

demonstrating the common trend of one parameter across a
several systems. Formulation in 1996 of the FEAST
hypothesis and the eighth law that identifies the E-type
process as a feedback system, as observed but not
appreciated in 1972, the observations to date and the laws
that result are seen a consequence of that reality.

Over the next months additional data is to be obtained and
the modelling and analysis subsequently refined. It is
expected that, by and large, this will confirm present
conclusions and permit their extension. In addition the
white box systems dynamics analysis of a number of
systems [leh98, wer98] is enabling the identification of
significant feedback loops and control mechanisms,
essential for further successful progress of the FEAST/1
study. If these studies are more widely taken up in the
software engineering community, and the process
community in particular, and if aspects of the study that
require multi disciplinary investigation receive the
necessary attention the result will be an increasingly
extensive and integrated basis and framework for software
process engineering with practical methods and tools to
support and improve it.

Acknowledgements
The authors are grateful to Brian Chatters (ICL) and
Harvey Siy (Lucent Technologies) for providing the data
on which this paper is based. Sincere appreciation is due to
Profs. W M Turski (Visiting Fellow), to Dr. P D Wernick
for their continuing contributions to this investigation.
Since Oct. 1996 this work has been supported under
EPSRC grants GR/K86008 and GR/L07437.

REFERENCES

[fea94/5]Preprints of the three FEAST Workshops, MM
Lehman (ed.), Dept. of Comp., ICSTM, 1994/5,
(http://www-dse.doc.ic.ac.uk/~mml/feast1/papers.html)

[kit82] Kitchenham B, System Evolution Dynamics of
VME/B, ICL Tech. J., May 1982, pp.42 - 57

[law82] Lawrence MJ, An Examination of Evolution
Dynamics, Proc. ICSE 6, Tokyo, 13 - 16 Sep
1982, IEEE Cat No. 82CH1795-4, pp. 188 - 196

[leh77] Lehman MM and Patterson J, Preliminary CCSS
System Analysis Using the Techniques of
Evolution Dynamics, Working Papers, Software
Life Cycle Management Workshop, Airlie, VA,
1977, Publ. by ISRAD/AIRMICS, Comp. Sys.
Com., Fort Belvoir, VA, Dec. 1977, pp. 324 - 332

[leh78] Lehman MM, Laws of Program Evolution - Rules
and Tools of Programming Management, Proc.
Infotech State of the Art Conf., "Why Software
Projects Fail", Apr. 1978, pp. 11/1 - 11/25

[leh85] Lehman MM and Belady LA, Program
Evolution, - Processes of Software Change,
Academic Press, London, 1985, pp. 538

[leh96a] Lehman MM, Perry DE and Turski WM, Why is
it so hard to find Feedback Control in Software
Processes?, Invited Talk, Proc. of the 19th
Australasian Comp. Sc. Conf., Melbourne,

17/4/98, 6:03 pm - 5 - mml573[Research Paper]

Australia, Jan 31 - Feb 2, 1996, pp. 107-115
[leh96b] Lehman MM and Stenning V, FEAST/1: Case for

Support, ICSTM, March 1996
[leh96c] Lehman MM, Laws of Software Evolution

Revisited, Proc. EWSPT'96, Nancy, 9 - 11 Oct.
1996

[leh96d]*Metrics and Laws of Software Evolution - The
Nineties View, Metrics '97 Symp., Albuquerque,
New Mexico, 5 - 7 Nov. 1997,. Also as Process
Improvement - The Way Forward, in Elements of
Software Process Assessment and Improvement,
IEE CS Press, 1998

[leh97a] id., Process Models - Where Next?, "Most
Influential Paper of ICSE 9" award, Proc ICSE
19, Boston MA, 17 - 23 May 1997, IEEE Cat No.
97CB36094, pp. 549-552

[leh97b] Lehman MM, Perry DE, Ramil JF, Turski WM
and Wernick PD, Metrics and Laws of Software
Evolution-The Nineties View, to be publ. inProc.
Metrics 97 Symp., Nov. 5-7th, 1997,
Albuquerque, NM

[leh98a] Lehman MM and Wernick PD, System Dynamics
Models of Software Evolution Processes, Proc.
Int. Wrkshp. on the Principles of Software
Evolution, ICSE'98, Kyoto, Japan, April 20-21,
1998

[leh98b] Lehman MM, Feedback, Evolution and Software
Technology - The Human Dimension, Proc.
Wrkshp. on Human Dimension in Successful
Software Development, ICSE'98, Kyoto, Japan,
April 20-21, 1998

[leh98c] Lehman MM and Ramil JF, Implications of Laws
of Software Evolution on Continuing Successful
Use of COTS Software, submitted to ICSM'98.

[mcg79] McGuffin RW, Elliston AE, Tranter BR and
Westmacott PN, CADES - Software Engineering
in Practice, Proc. ICSE 4, IEEE Cat No.
79CH1479-5C, Munich, Sep 17-19, pp. 136-144

[pau95] Paulk MC, The Evolution of the SEI's Capability
Maturity Model for Software, Soft. Proc. Improv.
and Practice, Pilot Iss., Aug. 1995, pp. 3 - 15

[roc75] Rochkind MJ, The Source Code Control System,
IEEE Trans. on Soft. Eng. SE 1 - 4, Dec. 1975,
pp. 364 - 370

[wer98] Wernick PD and Lehman MM, Software Process
Dynamic Modelling for FEAST/1, ProSim'98,
Proc. Int. Wrkshp. on Softw. Proc. Simulation
Modelling, June 22-24, 1998, Silver Falls, OR
[tur96] Turski WM, Reference Model for Smooth
Growth of Software Systems, IEEE Trans. on
Soft. Eng. v.22, n. 8, August 1996

[tus87] Tuscany PA, Software Development Environment
for Large Switching Projects, Proc. of Softw.
Eng. for Telecomms. Switching Sys Conf, 1987

Appendix
The initial FW analysis [leh97b], more recent work on data
relating to both FW and other systems and the development
of insight and understanding has shown that first statements
of the laws [leh78,85, ch. 7] needed generalisation to cover
behavioural variations amongst the systems and processes
studied and modification to address the new insight gained.

The table below summarises the understanding of the
salient aspects of the laws as of April 1998. Earlier versions
of these statements will be found in the collection of papers
brought together in [leh85]. A more recent discussion that
includes both the original and revised statements of the
laws and where source references are provided is also
available [leh96c,97b]. Future work must be expected to
lead to additional refinement, qualification or other
modification of the laws. In particular, as the precise
relationships between the first seven laws and the eighth
become better understood the laws may be expected to
become more specific, perhaps even formalised.

17/4/98, 6:03 pm - 6 - mml573[Research Paper]

No. and
Reference

Brief Name and Year
of First Publication

Supported by
FEAST/1
metrics

Current Formulation of Law

I
[leh85, ch. 7]*

Continuing Change
1974*

√ E-type systems must be continually adapted else they become
progressively less satisfactory.

II
[leh85, ch. 7]*

Increasing Complexity
1974*

? As an E-type system evolves its complexity increases unless work
is done to maintain or reduce it.

III

[leh85, ch. 7]*

Self Regulation
1974*

√ Except for the most primitive processes E-type system evolution
processes are self regulating.

IV
[leh85, ch. 12]

Conservation of
Organisational Stability

1978

√ The average effective global activity rate in an evolving E-type
system is invariant over product lifetime.

V
[leh85, ch. 12]

Conservation of
Familiarity

1978

√ The average incremental growth of a satisfactory evolving E-type
system declines * steadily* as the system evolves.

VI
[leh85, ch. 18]

Continuing Growth
1978

√ The functional content of E-type systems must be continually
increased to maintain user satisfaction over their lifetime.

VII
[leh96c]

Declining Quality
1994

? The quality ofE-type systems will appear to be declining unless
they are rigorously maintained and adapted to operational
environment changes.

VIII
[leh96c]

Feedback System
first implied 1972

1996

√ E-type evolution processes constitute multi-level, multi-loop,
multi-agent feedback systems and must be treated as such to
achieve significant improvement for other than the most primitive
processes.

Table A.1 Laws of software evolution restated

17/4/98, 6:03 pm - 7 - mml573[Research Paper]

