Implications of Evolution Metrics on Software Maintenance

M M Lehman
Department of Computing
Imperial College
London SW7 2BZ
tel: +44 (0)171 594 8214
mml@doc.ic.ac.uk

ABSTRACT

The FEAST/1 project is studying the impacfedédbackon

E-type software evolutionand a hypothesiswhich

attributesthe failure to achieve major softwapeocess
improvement, in part, to overlooking itsle. Amongst its
activities the FEAST/1 project [leh97] is studyimgptrics
of the evolution of severahdustrial softwaresystems,
ranging from a financial transaction system to a Varge
real time system. When comparing evolution metfiom

so widely different systems, similarities emengkich

support conclusions reached in a 1970s stud®®f360
evolution, enabling their further refinement aswthgesting

that, both metrics and conclusions derived from them are

relevantand should be taken intoonsideration for
successful software maintenance.

Keywords
Software:- maintenance, evolution, metriagnamics,

D E Perry
Bell Laboratories,
Murray Hill, NJ 07974
tel:+1 908 582 2529
dep@research.bell-labs.com

J F Ramil
Department of Computing
Imperial College
London SW7 2BZ
tel: +44 (0)171 594 8216
jefl@doc.ic.ac.uk

iterations at a given rate on the software proces®r
feedback loop [leh98b].

Software process improvemelnas always focussed on
forward path mechanisms: the introduction of nm@acess

steps, better languages, improved methods and tools and so

on. Such changes will be contained within feedhacks,
such as those monitoring and controlling prodyaality,
resource usage and the rate of progress. Gesiback
mechanisms might direct projects and processsards
organisational goals or providee checks antbalances
required to ensure a successful organisation.

As a software organisation evolves, feedback convibls
be set up to ensure, for example, desire quédirgls,
timely delivery, organisational stabilitgnd progress to
global goals. The external impact of changegotward
path mechanisms within negative feedback loopstiwh

be constraine@&nd yield less benefit than might be
expected on the basis of local assessment. Thus, changes to
1 Feedback in the Software Process feedback mechanisms, such as the use of inspeatamid,
Some years ago one of the present authors wondered whyrototyping or evolutionary developmefdr example,
major sustained improvement ofie industrial software should be important ingredients of process improvement.
process is so difficult to attain. No sooner asked then an)

answer came to mind. He recalled 1970's widehtifying 2 The FEAST Hypothesis .

the software process fd-type systems as multi-level The FEAST hypothesi§gedbackEvolution And Software
multi-loop feedback system with, in general, bpdsitive Technology) first formulated in 1994 [leh94hcapsulates
and negative feedback mechanigies85-cs5,12] Now these issues. It may be stated as:

positive feedback tends to cause growth and prcapessd As complex feedback systems, E-type softyareesses
up. Negative feedback, on the other hand, tendtatuilise evolve strong system dynamics and a tendéowgrds

a system or process, constraining the external impact ofglobal stability as exhibited by feedback systems
changes to forward path elements. The softwanzess Sub hypotheses include:

itself can be visualised as encompassing a nfemback | Software evolution proces$or E-type systems
loop which starts off irab initio development with a non constitutes a complex feedback system

trivial application concepaind ends up at the first and || Such feedback is likely to constrain benetiesived
subsequent iterationwith a version of anoperational from forward path changes,

system. A gap (partly due to invalidationagsumptions Il Major process improvement requires attention to
and partly due to learning and increasing ambitiarket feedback mechanisms and process dynamics
competition, etc) appears between the functionaligach

version of the operationalsystem (wheneventually 3 The FEAST/1 Project

delivered) and the application concept [leh98b]. Filtinig The hypothesis was initially explored bycare group’ and

gap through change and enhancement represesdarae discussed in a series of workshops [leh96a,fea84/5]. The
of unending software maintenance, thatthe sucessive
' To conserve space all papers included in [leh85teferenced
by their chapter number in that book

17/4/98, 6:03 pm

feedback, improvement; Lehman's laws

> Professors MM Lehman, V Stenning (Imperial College) and
WM Turski (Warsaw U,) and Dr DE Perry (Bell Labs-Lucent)

-1- mml573[Research Paper]

FEAST/1 research project, initiated in 1996 [leh96b] has development domainand are used in widelgifferent
been seeking tangible supporting evidence from data oncontexts. The observed similarities are, therefaonékely

active industrial evolution processddack box(metric) to be due to chance. Their common pattestnsngthens

analysis is beingundertakenand white box (system confidence in the validity of the original conclusions.

dynamics) modelsare beingdevelopedand analysed.

Findings have been reported [leh96,97,98a,b,wer98] In observationalstudies such ashe presentone,
confidencemay be increased in at leastwo ways.

4 Laws of Software Evolution Observation of similarity inthe behaviour of some

Recognition of the software evolution phenomenon and its evolution parameter across a number systémesgeases

investigationarose initially from a study othe IBM confidence in laws that encapsulate the common behaviour.

programming process [leh85-c3]. Various attributes of The more different the systems, the development or the
successive releases of 0S/360, as exemplified by fig. 1,application domains the greater the imp&aincentration
were examined. The figure shows that system grawér on data sets of an individual system and comparison of its
26 releases (identified bysequence numbaensn,) follows behaviour with that predicted byhe laws isequally

a smooth long range trend, with a superimposed ripple andconfidence building. Succeswith either approach

a region of instability or chaotic behaviour. Taken together, strengthens confidence; failure leads to modification or
these phenomena suggestetthe feedback-system-like rejection. Both are necessary to increase understanding and

properties mentioned above. control of software evolution.
8000 , Size in Modules 140000 Size in Modules

] OS/360 e] Lucent Tech. Sys 1
7000 Growth Trend ¢ 120000 Growth Trend

; °o®] ° [} p
6000 1 . 100000~ . @ & Cece
5000 - .] °

] o 80000 - e €
4000 - °® . .

1 A) 60000 e e *®
3000 - e® 1o

] oe 40000 -
2000 - L]
1000 ®**® 20000

0: T T T T \\RSN Oi““““““““‘RSN
0 5 10 15 20 25 o 3 6 9 12 15
Fig. 1 IBM OS/360 growth trend Fig. 2 Lucent Technologies system growth trend

The essence of the OS/360 observationsiatedpretation The Logica FW financial transaction system st{idy96,
were captured in eight Laws of Software Evolutj@in85- leh96d,97a,b] exemplifieshe observationatase study
cs7,12,19, 96¢] (see table A.1) - laws because they relatedapproach. It suggesthat FW evolution is largely
to social, manageriadnd organisationalnot technical, consistent with at least five of the eight laws. Tdiker

phenomena. Some, however, considered the staiece three are notcontradicted.There is simply no
tainted reflecting 1960/70s technology applied in a non evidence[leh96c]. Here too a consistent picture is emerging.
typical (ie. IBM) development environment to the evolution)) o _

of a, for its time, non typical system. Thebserved Addressing the investigation of system evolutionpoye
behaviourand lawsderived from it weretherefore, experimentatiornas not been totally discardeaithough
unlikely to be widely applicable [law82]. But the laws were not found feasible yet. Calibrated system dynamicslels
supported by subsequent wdiit82,leh85-c12,96d] and may offer an alternative to experimentation [leh98a,wer98].
by the metrics gathered under the FEAST/1 project, as

exemplified in fig. 2. 4 Metrics of Software Evolution

A list of metrics and indicators currently beiognsidered

Figs. 1 and 2 show the growth trend of the earliestand mostin FEAST/1 is shown in table 1. This list is in no way
recently received data respectively. Despite a decade ~ complete.For example, it doesnot include derived

interval between their creation and an ordemafgnitude indicators obtained either as a function of onemmre
difference in size there is sufficient similaripgtween indicators. Alternative surrogate measures whsohvey
these growth patterns to suggest an under|y;'m@|m0n the underlylng attributes (SIZE, activity, effort, etc) in the
phenomenon. Similar pattern were observed in fiber ~ evolution of a particulaE-type program may beefined.
systems for which data was obtained in the 19/20§7,8, An investigator interested in the software evolution process
leh85, ch. 12] and for three now being studi@tese tries to get a picture of several yearstbfype system
systems address different application areas, coweida history from records and data stored in historic datses,
range of sizes, were/are being evolved in gdifierent configuration management systems or similar support tools

which were defined for other purposes [mcgv&;75,
17/4/98, 6:03 pm -2- mml573[Research Paper]

tus87]. One must live and work with the available measures An complementary measure is described tiwe term

and apply an analysis procedure that carmgémeralised handlings This measure differs frorhandlesin that a
across systems. Thiapparentlylack of rigour, when module to which "n"(independent) changese made is
compared with grass root software metrics programs is acounted n times to determine the count. A module change is
fact of life in software evolution studies and it is one of the completed (an a handling counted) wheniradependent
reasons to consider thelationship betweetthe actual task such as a bug fix or thiemplementation of an
metrics and the attributes as fuzzy. It may also explain why enhancemenhas beenperformed. Handlings isnot,

an appropriate way of encapsulating findings is in linguistic however, a widely available count.

statements such as those of the laws. Where more than one

measure is available for the same attribute aspecific A top-down approach for metricdefinition havebeen

of detail both ‘tell the same story'. a system may be split when needed or justified in size of
certain sub-systems, or size of certain type of code (eg
automatically generated modules from those whecjuire
Release sequence number - rsn intellectual effort). As a general guideline when starting a
Size of system - subsystems, modules, files, etg. metrics program it is recommended to keep the number of
Elements handled - subsystems, modules, files| etc. ~ different metrics to a minimum, so that it is possible to
' ’ ' characterise the evolution of a given systemgémeral,
Elements added - subsystems, modules, files, gtc. metrics such as those which are dependent @ertain
Elements changed - subsystems, modules, fileg, etc. ~ process definition should be avoidethey will only
Elements deleted - subsystems, modules, files, |etc. convey some meaning during the period under which a

- - articular process model was being enacted.
Element handlings - subsystems, modules, files, etc. P P g

Release interval or general availability (G.A.) ddte Various problems withthe metrics are: changes in

o - : technologies (language) or practices which may change the
Effort applied - in appropriate units interpretation ofthe metrics, parallel work which may
Errors detected before and after G.A.- per release affect consistencyand applicability of the releasework
Errors fixed before and after G.A.- per release concept, and drastic changes in release interval.

—

Table 1 FEAST/1 Metrics of Software Evolution In addition to the source code (and the processsolving
the source code) other models of the application calsil

Measures based on rsn as a pseudo-time indibate ~ Pe measured and analysed. Metrics could be apiplied

proven consistently useful in bothe early ancurrent alia to the specification documents, requiremerttggh
software evolution studies [leh85,97]. The age, absolute orlevel designsand low leveldesigns. Size could be
relative, of a system at the time of releasehisyever, measured in number of paragraphs, numberimic
sometimes morappropriate, in particulawhen drastic sentences, number of components or statemetts,
changes in release intervals have ocurredprsiously Managementunits such as changelocuments or
discussed[leh85,97binodulecounts (or relatedneasures ~ Modification requestscould also be counted and

eg, files, etc.) offer a number of advantages (irctreext accumulated by re_lea_se_: under_the assumption t_hat given a
of software evolution studies) over other measures, such agarger number, individuaunits can be considered
function points and, in particular that theye always homogeneous.

available in historic data bases and so provig®intial

for cross system comparison [leh97b]. Because of the declining costs of storage, it appears to be

more appropriate to establish an electronic archive with all
The metricelement®r modules handlednay be taken @ the generated releases dhe source code antelated
measure of the work done in developing releaseltifs application models with metric purposes in mirlan
widely defined as the sum of the number of elements or Storing summarisedata only. Summarisationmplies
modules created and those changed in the coursleapf assumptions whicimay become invalid or forgotten. A
work. Changed modules are those differing in, at least, onecase study of software evolution may begin with a set of
non-comment line to the equivalent module in phevious metrics which later on may need to be redefined or_refined.
version. Deletions may or may not be included. Isshets ~ Access to raw data guarantees that new rappeopriate
arise from the use ofnodules handled include the metrics could be always defined and extrated.

definition for modules used by eachdevelopment
environments, the stability of those definitions otiare,
the spread in the extent of the changesindividual
modules and the variability of the portion of thgstem
being handled at eaakleaseThe number or fraction of
modules being deleted may also bignificant atsome
point in the system's history.

5 Results to date

Paucity in the number of releases (in all of the cdess
than 30) havehinderedthe application of standard
statisticaltime series techniques tthe FEAST/1data.
Nevertheless, analysis techniques which have bpplied

to FEAST/1 data are of the simplest and have yielded some
results. They include visual inspection of the plotslata

as a function of rsn or of the age of system (whatever more

® G.A.: general availability
17/4/98, 6:03 pm -3- mml573[Research Paper]

appropriate) to assess general trends, to idemt@yima Percentage 0S/360

and minima (these provide an idea of proa=gscity). 100, °

General trends have been obtained by perforriimegar

least squares fits and by assessing the sign afethdting 80 1 ,) R

slopes. T(ital Size of System ' s o°
60 1 y =3.03x + 8.37 <) .

Recent publications have discussed the blackrbeults ® °

°® s
obtained to date [tur96, leh97b,leh98b]. Similarities can be 40] o’ ,: ' "

perceived from the evolutionary behaviour and trends of LR M
* L 2R X 4

. . . . p [} |
the systems currently being studied. Resultsdnnection 20] i Yee * Part of System not Touched
with the laws are summarised in table A.1. Ns&ttion MR y=113x+1273 '
shows an example of the analysis focused on satye 0le ‘ ‘ ‘ o RSN

aspects of system evolution. 0 5 10 15 20 25

5.1 Trends of Total Size and Portion not Touched ICL VME Kernel
Fig. 3-6 show both, the total size of a systermiodules 100 Fercentage

and the part of the system not touched at each release. Bot _ o
measures are expressed as a percentage of the kirgest Total Size of System @ = ¢-e e o
achieved by the system. Linear least square mdudele

80 4 y= 3.46x + 10.22 ® ®
been fitted to highlight the dominant trend in each series. ® .
60 | o« ¢ Part of System not Touched

. y = 3.48x - 1.44

},.7.7. o0 ®
*

.
e e ® o0 ¢

All of the plots support the sixth law (continuiggowth).
The plots also provide, in one way or another, support for .
the first, second, third, fourthand eighth law. The 40 ::0
interpretation is analogous tthe already published for

Logica FW and theinterested reader is referred to 20
[leh97b].

*

()
*

\ \ \ \ RSN
14 19 24 29

© e

When comparing the plots, OS/360 shovssgnificantly Percentage Lucent Tech. Sys 1

different slopes for the linear models fitted to the teta¢ 100 o o

(3.03), on one side, and to the part of the system not Total Size of System o P
touched (1.13), on the other. That is, in OS/360ptirdon y = 3.37x + 49.80°) .
of the system being touched (ie added or modifiedjah 801 * oo s .,
release increased, ending up with a periodnstability ° * %

from rsn 21 onwards. On the contrary, in the otheee 60 1 e * L S

systems (which display a stable evolutidhp linear LRI Part of System not Touctie
models (major component oktach trend)display .-e y=2.92x + ‘
approximatelyparallel lines, indicating, on average, thata 404 ®
constant portion of the system being manipulatedaah
release cycle. This finding isonsistentwith early 20 ‘ ‘ ‘
conclusionsand with thehypothesisthat an evolving 0 5 10 15
system develops an inherent system dynamics and

invariances. This happens in a way whichndependent Percentage Lucent Tech. Sys 2

from the day to day managers' and develomlrssions. 100+ o
Again, the similarities between these parallel lireadels e e
in three different systems suggest an underlgiognmon 80 Total Size of System

y = 5.55x + 26.44 e \
phenomenon. o ® .

® o-o .

5.2 Trends of the Incremental Growth 601) .-
A linear model fitted to the incremental growflieh85] 401 ° .
over releases displays a positive slope only in case of -* . Part of System not Touched
0S/360 and negative in the three other cases (piots PR y =529%+8.05
been omitted). This suggest that on average, a positive bu 204 %
decreasing incremental growth can be the norm and not a ¢ RSN
constant incrementagrowth as originallysuggested 0 B 2 ‘ ‘ ‘ ‘ ‘ ‘

") 72 4 6 8 10 12 14
[leh85]. A positive and increasing incremental growth may,

therefore, be discarded.

RSN

*

Fig. 3,4,5 and 6 Trends of the total system size

5.3 Trends of Changed and Added Modules and the portion of system not touched
Initial findings seem to indicate that at some point in the
lifecycle the number of changed modules per release is

17/4/98, 6:03 pm -4 - mml573[Research Paper]

greater than the number of added modulsreover demonstrating the common trend of one parameter across a
the slope of a linear model fitted to the numberdtied several systems. Formulation 996 of the FEAST
modules over releases is negative or close to zero for thehypothesis and the eighth law that identifies Hag/pe

four systems mentioned above. On the other hatidear process as a feedback system, as obsebuddnot
model fitted to changed modules over release stlopes appreciated in 1972, the observations to date ankwse
which are positive in some cases and negative in others. Inthat result are seen a consequence of that reality.

all the cases the slope of changed modules over releases is

greater than the corresponding slope for addedules. Over the next months additional data is to be obtained and
This regu|arity across systems awaiappropriate the modelling and analysis Subsequently refined. It is
interpretation. expected that, by and large, this will confipnesent
conclusionsand permit theirextension. In addition the
6 Implications on Software Maintenance white box systems dynamics analysis of a number of
It has been shown how simple analysis technidliresar systems [leh98, wer98] is enabling tidentification of
models) applied to a relative small number of metrics can significant feedbackoops and control mechanisms,
yield insight and understanding intra and acrdifferent essential for further successful progress of FEAST/1
projects and characterise aspects of the softexstution study. If these studies are more widely taken up in the

and itsstability. Collectionand analysis of metrics of software engineering communitygnd the process
software evolution offer a number of othadvantages. = community in particular, and if aspects of the sttt

They provise a base for the building forecastimadels. require multi disciplinary investigationreceive the
They facilitate the estimation ofthe processapacity necessary attentiothe result will be anincreasingly
(estimatedfrom historic maximaand minima)which extensive and integrated basis and frameworlsddtware

suggest a safety margin for smooth evolution. They provide process engineering with practical methods and tools to
a means to assess effects of process improvements policiesupport and improve it.
on global long termbehaviour. (FEASThypothesis

suggests that local processprovementwill not alter Acknowledgements _

global processharacteristics). Moreovethe suggested ~ The authors aregrateful to Brian Chatters (ICL) and
metrics offer means for the calibration of sys@ynamic ~ Harvey Siy (Lucent Technologies) for providing tifeta
models for policy evaluation [leh98a, wer98]. on which this paper is based. Sincere appreciation is due to

Profs. W M Turski (Visiting Fellow), to Dr. P Bernick
The way forward requires more data on more systems in afor their continuing contributions tahis investigation.
variety of applicatiorand implementatiordomains.. As Since Oct. 1996 this work has besuapportedunder
already observed, results to date have led to further supporEPSRC grants GR/K86008 and GR/L07437.
but also to restatement of the laws. As more datomes
available, further revision and more precisemulation REFERENCES

may be necessary. [fea94/5]Preprints of the three FEAST Workshops, MM

This study has complementary aspects. On the one hand, it Lehman (ed.), Dept. of Comp., ICSTNI994/5,
provides a conceptual framework for and elements of a (http:/www-dse.doc.ic.ac.uk/~mml/feast1/papers.htmi)
theory for the software process and iisprovement. It [kit82] Kitchenham B,System Evolution Dynamics o
demonstrates that software process modelling rmase VME/B ICL Tech. J., May 1982, pp.42 - 57
extensively and consistently reflect the feedback nature of [law82] LawrenceMJ, An Examination ofEvolution
both the software process in its technical aspects and the Dynamics Proc. ICSE 6, Tokyo, 13 - 16 Sep
global business process, reflecting the impadeefiback 1982, IEEE Cat No. 82CH1795-4, pp. 188 - 196
control. But the metrics are also of practigaportance. [leh77] Lehman MM and Patterson Breliminary CCSS
They provide asystematic basigor developing and System Analysis Usinghe Techniques fo
controlling a systematic system evolution strategy and EvolutionDynamics Working PapersSoftware
tactic and in identifying tools to support this process. Life Cycle Management Workshop, Airlie, VA,
. 1977, Publ. by ISRAD/AIRMICS, ComSys.
7 Final Remarks Com., Fort Belvoir, VA, Dec. 1977, pp. 324 - 332
Following the original software process study [leh&52] [leh78] Lehman MM Laws of Program Evolution - Rules
and its follow up [leh85, c_:h. 5] the study ebftwe_lre and Tools of Programminlylanagement Proc.
evolutl_on was advanced during the 1970s by analysis of the Infotech State of the Art Conf., "WhSoftware
behavioural patternand trends of system angrocess Projects Fail", Apr. 1978, pp. 11/1 - 11/25

parameters across a range of systemsaagdnisations [lehgs]
[leh85]. This led to formulation of the laws gbftware
evolution (see appendix), to the development of a degree of
confidence in their validity and, more recently, to the
FEAST hypothesisand the FEAST/1 project. Initial
findings derived from data on the Logica FW systbave
reproduced and extended the earlier concludieh87b].

The present paper providesthogonal confirmation by

17/4/98, 6:03 pm -5- mml573[Research Paper]

Lehman MM and Belady LA, Program
Evolution, - Processes of Softwa@hange
Academic Press, London, 1985, pp. 538

[leh96a] Lehman MM, Perry DE and Turski WNWhy is
it so hard to find Feedback Control 8oftware
Processes? Invited Talk, Proc. ofthe 19th
AustralasianComp. Sc. Conf., Melbourne,

Australia, Jan 31 - Feb 2, 1996, pp. 107-115
[leh96b] Lehman MM and Stenning VEAST/1: Case for
SupportICSTM, March 1996
[leh96c] Lehman MM, Laws of Software Evolution
Revisited Proc. EWSPT'96, Nancy, 9 - 1Qct.
1996
[leh96d]*Metrics and Laws of Software Evolution - The
NinetiesView, Metrics '97 Symp.Albuquerque,
New Mexico, 5 - 7 Nov. 1997,. Also &ocess
Improvement - The Wdorward, in Elements of
Software Process Assessment émgrovement
IEE CS Press, 1998
[leh97a] id., Process Models - Wher#lext? "Most
Influential Paper of ICSE 9" award, Pré€SE
19, Boston MA, 17 - 23 May 1997, IEEE Cat No.
97CB36094, pp. 549-552
[leh97b] Lehman MM, Perry DE, Ramil JF, Turski WM
and Wernick PDMetrics and Laws oSoftware
Evolution-The Nineties Viewp be publ. inProc.
Metrics 97 Symp., Nov. 5-7th, 1997,
Albuquerque, NM
[leh98a] Lehman MMand Wernick PDSystem Dynamics
Models of Software EvolutioRrocesses Proc.
Int. Wrkshp. onthe Principles of Software
Evolution, ICSE'98, Kyoto, Japan, Api0-21,
1998
[leh98b] Lehman MM, Feedback, Evolution anBloftware
Technology - The HumanDimension Proc.
Wrkshp. on Human Dimension isuccessful
Software Development, ICSE'98, Kyot#gpan,
April 20-21, 1998
[leh98c] Lehman MMand Ramil JFimplications of Laws
of Software Evolution on Continuirguccessful
Use of COTS Softwaresubmitted to ICSM'98.
McGuffin RW, Elliston AE, Tranter BR and
Westmacott PNCADES - Softwar&ngineering
in Practice, Proc. ICSE 4, IEEE Cat No.
79CH1479-5C, Munich, Sep 17-19, pp. 136-144
Paulk MC,The Evolution of the SEIGapability
Maturity Model forSoftware Soft. Procimprov.
and Practice, Pilot Iss., Aug. 1995, pp. 3- 15
Rochkind MJ,The Source Code Contr8istem
IEEE Trans. on Soft. Eng. SE 1 - 4, D&875,
pp. 364 - 370
Wernick PDand Lehman MMSoftware Process
Dynamic Modellingfor FEAST/1 ProSim'98,
Proc. Int. Wrkshp. on Softw. Pro&imulation
Modelling, June 22-24, 1998, Silver Falls, OR
[tur96] TurskiWwM, Reference Model foBmooth
Growth of SoftwareSystems IEEE Trans. on
Soft. Eng. v.22, n. 8, August 1996
TuscanyA, Software Development Environment
for Large SwitchingProjects, Proc. of Softw.
Eng. for Telecomms. Switching Sys Conf, 1987

[mcg79]

[pau9s]

[roc75]

[wer98]

[tus87]

17/4/98, 6:03 pm

Appendix

The initial FW analysis [leh97b], more recent work on data
relating to both FW and other systems and the development
of insight and understanding has shown that first statements
of the laws [leh78,85, ch. 7] needed generalisatiaoter
behavioural variations amongst the systems@modesses
studied and modification to address the new insight gained.

The table belowsummariseshe understanding of the
salient aspects of the laws as of April 1998. Earlier versions
of these statements will be found in the collection of papers
brought together in [leh85]. A more recent discussia
includes both the original and revised statements of the
laws and where souraeferencesare provided isalso
available [leh96¢,97b]. Future work must be expected to
lead to additional refinement, qualification oother
modification of the laws. Inparticular, asthe precise
relationships between the first seven laws andeibbth
become better understood the laws may be expected to
become more specific, perhaps even formalised.

mml573[Research Paper]

work

itive

No. and Brief Name and Year | Supported by Current Formulation of Law
Reference of First Publication EEAST/1
metrics
I Continuing Change v E-type systems must be continually adapted else beepmé
[leh85, ch. 7]* 1974* progressively less satisfactory.
Il Increasing Complexity ? As anE-type system evolves its complexity increases unless
[leh85, ch. 71* 1974* is done to maintain or reduce it.
i Self Regulation v Except for the most primitive procesdesype systenevolution
[leh8s, ch. 7]* 1974* processes are self regulating.
\Y Conservation of v The average effective global activity rate in an evohkErtype
[leh85, ch. 12]|Organisational Stability system is invariant over product lifetime.
1978
\% Conservation of v The average incremental growth of a satisfactory evolkitype
[leh85, ch. 12]|Familiarity system declines * steadily* as the system evolves.
1978
VI Continuing Growth v The functional content oE-type systems must beontinually
[leh85, ch. 18] 1978 increased to maintain user satisfaction over their lifetime.
Vil Declining Quality ? The quality ofE-type systems will appear to be decliningess
[leh96c¢] 1994 they are rigorously maintainecand adapted tooperationg
environment changes.
VIlI Feedback System v E-type evolution processes constitutailti-level, multi-loop,
[leh96c] first implied 1972 multi-agent feedback systenasid must be treated as such to
1996 achieve significant improvement for other than the most prin
processes.

Table A.1 Laws of software evolution restated

17/4/98, 6:03 pm

mml573[Research Paper]

