
-- --

Programmer Productivity in the Inscape Environment

Dewayne E. Perry
AT&T Bell Laboratories
Murray Hill, NJ 07974

published in

The Proceedings of GLOBECOM ’86.
Houston Texas, 1-4 December 1986
pages 0428-0434 (12.6.1 - 12.6.7)

Abstract

The Inscape Environment provides tools for building and evolving large, programmed
systems. The primary goals of the environment are to improve communication among
developers, improve the effectiveness of the developers, assist in managing the
complexity of building large systems, and assist in managing the evolution of large
systems. To these ends, Inscape provides a formal module interface specification
language (Instress) as the basis for program construction and evolution.
Specifications, then, provide the basis for communication among programmers and the
basis for a practical approach to software reuse. The environment enforces the
consistent use these specifications and in so doing prevents a number of classes of
errors from occuring. Further, the environment assists in process of constructing
programs by recording the minute details of interconnections and by enforcing
Inscape’s rules of program construction, thereby aiding the developer in determining
the completeness of an implementation. Because of the knowledgeable-environment
approach, Inscape also assists in managing the process of evolution by tracing the
implications of changes, coordinating those changes among multiple programmers, and
guaranteeing the consistency and completeness of those changes.



-- --

1. Introduction

Programmer productivity issues must be considered in the context of the kinds of

systems that are being built. Our approach in the Inscape Environment [Perry 85a,

86b] is to provide tools for use in the building of large programmed systems —

systems that are built by a large number of developers, that are complex, and that

evolve throughout their life. It is with these kinds of systems in mind that the Inscape

Environment provides tools to

• improve communication among developers,

• improve the effectiveness of the developers,

• assist in managing the complexity of building large systems, and

• assist in managing the evolution of large systems.

In section 2, we present a summary of the Inscape Environment and discuss the

general approach taken to aid the developer with interface specifications, program

construction, and program evolution. We then discuss in section 3 four issues of

programmer productivity in the light of the Inscape approach. And, finally, we

summarize the discussion in section 4.

2. A Summary of the Inscape Environment

The fact that interface problems are significant in the development of programmed

systems (cf. [Perry 85b, 86d]) led to the conception of a program construction and

evolution environment based on the constructive use of module interface specifications.

By constructive use we mean that the interface specifications are used by the

environment in the construction and evolution of programmed systems.

Inscape currently addresses three problems in the process of building programmed

systems:

• module interface specifications,

• program construction, and

• program modification.



-- --

2.1 Module Interface Specifications

Instress (the module interface specification language) extends Hoare’s input/output

predicates [Hoare 69] in order to describe the properties of data and the behavior of

operations. We introduce the notion of obligations to extend the specification of an

operation’s results. Postconditions by themselves are not sufficient to capture all the

side-effects of an operation; they describe what is known to be true after the execution

of an operation, but do not specify what the programmer is obliged to eventually

satisfy as a result of using the operation (e.g., closing files, deallocating buffers,

making data consistent, etc.). Example 1 illustrates what a specification might look

like for the successful execution of reading a record from a file.

ReadRecord(<in> fileptr FP; <in> int R; <out> int L; <out> buffer B)
Preconditions:

ValidFilePtr(FP)
FileOpen(FP)
LegalRecordNr(R)
RecordExists(R)
RecordReadable(R)
RecordConsistent(R)

Postconditions:
ValidFilePtr(FP)
FileOpen(FP)
LegalRecordNr(R)
RecordExists(R)
was RecordReadable(R)
was RecordConsistent(R)
Allocated(B)
RecordIn(B)
BufferSizeSufficient(B, L)

Obligations:
Deallocated(B)

Example 1

Further, we provide the notion of multiple results so that exceptions can be precisely

and exactly specified in terms of what they mean (i.e., their postconditions) and what

is minimally required to handle them (i.e., their obligations). Pragmatic information is

also included with the exception specifications to indicate recommended recovery

techniques or specific recovery operations. Example 2 illustrates what an exception

specification might look like for the ReadRecord operation where the data is readable

but not consistent.



-- --

Exception:
RecordInconsistent(R)

Postconditions:
ValidFilePtr(FP)
FileOpen(FP)
LegalRecordNr(R)
RecordExists(R)
was RecordReadable(R)
not RecordConsistent(R)
Allocated(B)
RecordIn(B)
BufferSizeSufficient(B, L)

Obligations:
Deallocated(B)

Recovery:
ReconstructRecord(L, B)

Example 2

The environment provides a language-knowledgeable editor (built using the Gandalf

environment generation tools — see [Notkin 85] and [Habermann 82]) for Instress that

enables the developer interactively to construct module interface specifications. The

editor eliminates the problems of syntax errors and specification standards by

presenting the user with the templates for each language construct, the possible

language commands for each metanode (i.e., each piece of the template that must be

filled in by the user) in the template, and a standard presentation of the specifications.

2.2 Program Construction

The predicates used in the specifications of the properties and constraints of data and

of the behavior of operations provide the basis for semantic interconnections (see

[Perry 86a] for a discussion of the semantic interconnection model) used in

constructing programs. Knowledge of the interface specifications, the implementation

language, and the rules of program construction are incorporated into Inscape’s

program construction editor in order to maximize the effectiveness of the environment

and to minimize the effort of the programmer. While constructing a program

interactively, the environment enforces the consistent use of Instress module interface

specifications, enforces Inscape’s rules of program construction, and automatically

records the dependency relationships and the semantic interconnections determined by

the implementation. Further, the environment determines whether an operation’s

implementation is complete (i.e., there are no preconditions or obligations that are



-- --

unsatisfied and unpropagated to the interface) and automatically creates the operation’s

interface on the basis of its implementation.

2.3 Program Modification and Evolution

The details recorded as a part of the system-building process form the basis for

extending Inscape’s program construction editor to handle program modification as

well. Because of the semantic interconnections, Inscape is able to determine the

implications and extent of changes, both to the interface specifications and to their

implementations. The Infuse subsystem [Perry 86c] manages and coordinates multiple

source changes by multiple programmers, propagates these changes interactively, and

guarantees their completeness and consistency. Basically, the implications of a change

are determined by the functionality depended upon and by what is known to be true at

the point of the change. During the change process, the environment enforces

Inscape’s rules of program construction and the consistent use of the interface

specifications in order to preserve the basic integrity of the implementation.

3. Issues of Programmer Productivity

There are four basic areas in which Inscape affects programmer productivity:

• writing module interface specifications,

• preventing classes of interface errors,

• assisting in the process of program construction, and

• assisting in the process of program modification and evolution.

We discuss each of these areas and indicate the ways in which Inscape improves the

productivity of the programmer.

3.1 Module Interface Specifications — a Front-Loaded Process

With the emphasis on the formal specification, the Inscape approach puts a much

heavier burden on the developer during the design and specification phase of the

system building process. Much more thought is required to supply the amount of

detail required in the module interface specifications than is currently required for the

informal design and specification documentation that is generally provided as part of



-- --

current system development. Note, however, that this difference in effort is due to the

incompleteness and inadequacy that is accepted in the current, informal approaches.

Thus, the Inscape approach with its formal specifications requires more work, and, in a

general sense, results in lower productivity in the design and specification phases of

the building process. However, a distinction between short term and long term

productivity is in order here. In the short term, there is indeed more work required in

order to produce the specifications. To combat this short term decrease in

productivity, there are some aids that the environment provides to ease the amount of

effort required of the developer. The Instress editor makes it easy to copy sets of

predicates so that the specification of exceptional results does not require tedious and

repetitive typing. Some of the rules of interface specification are concerned with the

relationships between preconditions and exceptions; the editor aids the specifier in

determining what ought to be the minimal set of exceptions, given the set of

preconditions. Further, the editor provides type and consistency checking so that the

specifications are internally consistent. And finally, the editor checks for a minimal

form of specification completeness.

Within the Inscape Environment, there are some long term benefits: the specifications

provide the basis for construction and evolution. Without the specifications, the

environment would not be able to assist in the construction process nor provide

assistance in the modification process. We will discuss these aspects further in

sections 3.3 and 3.4.

One important long term benefit of the language-knowledgeable specification editor is

that the specifications have a uniform format and become the common means of

communication between designers and programmers. While this does not reduce the

amount of effort to produce the specifications, it does reduce the amount of effort

needed to consume (i.e., read and use) the specifications. We agree with [Guttag 80]

that formal specifications ... proved to be a useful communication medium.

The specification language coupled with the uniformity of the specifications provide an

important basis for software reuse. Because the meaning and proper use of a module

is captured in the specification and is understandable by the user, there is more of an

increased incentive to reuse, rather than to rewrite, software.



-- --

Another important benefit, though largely unquantifiable, is that the resulting design is

better because of the larger effort required to write formal specifications. [Guttag 80]

states:

The most difficult part of this exercise was deciding on the abstractions we wished

to have and on the functionalities of the operators associated with these

abstractions. This is not surprising. Anyone who has spent time designing

software knows that dividing it into appropriate modules is a difficult task.

Fortunately, the process of trying to axiomatize the abstractions we had

provisionally chosen proved to be a great help. Whenever we discovered that the

axioms specifying the type were getting overly complex, we took this to mean that

we had not achieved a proper separation of concerns, and consequently revised

our choice of abstractions.

Further, [Guttag 82] notes that:

The process of formal specification encourages prompt attention to inconsistencies

and incompleteness and ambiguities in understanding. Each of our efforts in

program specification has clarified our understanding . . . — whether the attempt

came before or after the construction of the program. In many cases, such

improved understanding has been the major result of the specification effort.

Some aspects of improvement in productivity with respect to interface errors are

discussed in the next section.

3.2 Error Prevention

In [Perry 85b], we provided an initial analysis of the interface faults in a system test

and integration phase of a large, real-time operating system. An operational definition

of interface faults (i.e., changes affecting more that one file and changes to header files

— the system was written in C) yielded an error rate of approximately 36% interface

errors. This set of errors was analysed and classified in detail. A preliminary look at

the single file error set (representing about 64% of the total error set) yielded about

51% interface errors, for an overall percentage of 68.6% interface errors for the entire

error set. In [Perry 86d], we completed our analysis of the single file interface faults

and integrated the results of the two analyses.



-- --

There are a number of error classes which are basically design errors — errors that

better design would have reduced or eliminated. These are the errors we referred to in

the preceding section that would benefit from the formality of the specification phase.

The amount by which they would be reduced is impossible to determine; however, we

think that there would be a reasonable reduction in the number of errors. These error

classes are as follows (and represent 24.4% of all the interface errors):

Inadequate functionality,

Disagreements on functionality,

Changes in functionality,

Added functionality,

Changes in data structures, and

Additions to error processing.

There are however, a number of error classes which are directly addressed by the

Inscape environment and are largely prevented from occurring (in much the same way

that syntax-directed editors prevent syntax errors from occurring — the editors do not

allow them to occur). These errors classes are:

Data initialization/value errors,

Violation of data constraints,

Inadequate error processing,

Misuse of interfaces,

Inadequate interface support,

Hardware/Software interfaces,

Inadequate postprocessing,

Coordination of changes, and

System construction.

These error classes account for approximately 73% of all the interface faults (and

approximately 50% of all the errors reported in this study). We discuss in the

following paragraphs how Inscape prevents these errors from occurring.

The data initialization/value (5.7%) and constraint-violation (4.1%) errors are

prevented by the environment because 1) they are explicitly defined for each type,

constant and variable, and 2) the environment enforces the satisfaction of the data



-- --

properties and constraints (as part of enforcing the consistent use of the interface

specifications).

The inadequate error processing errors (17.7%) are prevented because 1) the exact

meaning and minimal handling requirements of each exception is explicitly given in

each operation interface specification, and 2) the environment enforces the satisfaction

of those specifications as part of the program construction process.

The misuse of interface errors (6.7%) are prevented for the same reasons as the classes

in the previous two paragraphs: the environment enforces the consistent use of the

interfaces in the construction process.

Inadequate interface support errors (5.6%) are prevented by the environment because

module interfaces are constructed automatically on the basis of the implementation of

the module. A comparison can then be made between the specified and the

constructed interfaces to see if the constructed interface supports (that is, in some

reasonable sense it matches) the specified interface.

Given a hardware interface specification of the sort provided for software module

interfaces, the environment can prevent the Hardware/Software interfaces errors

(4.9%) in the same way that it prevents the misuse of interface errors.

Inadequate postprocessing errors (10.4%) are exactly those errors which occur because

obligations are not specified in either formal or informal methods. By adding

obligations to the result specifications, the environment can then enforce their eventual

satisfaction.

Coordination of changes errors (10.3%) are eliminated because the environment

provides a change management and coordination component in which the implications

of the changes are first determined and then propagated in a complete and consistent

manner.

Finally, system construction problems (7.7% — in this case endemic to building

systems in C: essentially #include problems) are eliminated because the environment

has a detailed understanding about the dependency structure of the system and

generates the appropriate dependency information for the correct compilation and

linking of the system pieces.



-- --

It is important to note that these problems that we have been discussing have occurred

at the system and integration phase — that is, rather late in the development cycle.

These same kinds of errors occur much earlier in the development cycle and while we

have no explicit data about the frequency and the numbers of these errors, we feel

(based on our experience developing large systems) that they constitute a significant

problem in the early part of the implementation cycle as well. Hence, Inscape would

prevent these errors from occurring when they would normally first appear, thus

increasing the productivity of the programmer even further.

3.3 Environmental Assistance in Program Construction

We have alluded to a number of ways in which Inscape’s assistance in program

construction improves the productivity of the programmer. While enforcing the rules

of program construction with respect to the Instress specifications, Inscape records the

interdependencies that occur in the implementation — that is, the preconditions and

obligations that are satisfied and the postconditions upon which they depend. When

preconditions or obligations are not satisfiable within the implementation as it

currently exists, an attempt is made to propagate them to the encompassing interface.

However, it may not be possible to do this. Preconditions may conflict with previous

preconditions or postconditions which form a ceiling that stops their outward

propagation. Similarly, obligations may conflict with subsequent obligations which

form a floor beyond which the obligation may not penetrate. When these precondition

ceilings and obligations floors occur, the implementation is incomplete and further

code must be inserted at appropriate points to satisfy these conditions. The

environment determines when and where these conditions occur and provides

assistance in determining how to resolve their satisfaction. For example, if two

ReadRecord operations (see Example 1 above) occur one immediately after the other,

the obligation to deallocate the buffer denoted by Bufptr incurred by the first

occurrence will conflict with the obligation incurred by the second occurrence (that is,

the pointer to the buffer will be lost and the buffer will not be deallocated). Hence,

the second occurrence will form an obligation floor for the first obligation.

One way that the environment does this assistance is to search the system database to

find operations which supply the desired postconditions and present the list to the user.

Another way the environment helps is to provide a database browser for the



-- --

programmer to determine what is available and what might be usable to build or

complete an implementation.

Once the implementation is complete, the environment-constructed interface can be

compared against the desired specification of the module to determine whether the

implementations of the components are correct with respect to their specifications.

(Note that because the form of consistency that we provide in the Inscape environment

is relatively weak, there still may be errors in the implementation even though the

implementation is complete and provides just what is required by the specifications —

there may exist subtle logical inconsistencies that cannot be caught by the

environment.)

Thus, Inscape improves the programmer productivity not only by preventing errors

from occurring, but by assisting the programmer in building a complete, consistent,

and correct implementation (within the limitations of the environments consistency

checking).

3.4 Environmental Assistance in Program Modification

The Inscape Environment improves the productivity with respect to program

modification in three ways: it determines the implications and the extent of changes; it

coordinates the change process among the programmers making changes to the system;

and, it ensures the completeness and the consistency of the changes.

By automatically determining the implications of any given change (by determining

the affects of removing/adding various predicates from/to the interface specifications or

the implementation), the environment improves the efficacy of the programmer and

removes some of the iterations that result from incompletely understood changes.

Further, programmers may simulate the effect of their changes on other modules to

determine the resulting problems induced by those changes. Thus, the programmer’s

understanding of a change’s effects is increased in a very practical way.

The Infuse component of Inscape provides an automated forum for coordinating sets of

changes among multiple programmers. As changes are made and committed to,

Inscape propagates them in a systematic way (through deposits of the modules into the

parent experimental database) and determines the consistency of the changes among

those modules in that particular experimental database. This process of deposit,



-- --

propagate and consistency checking is repeated until all the changes have been

processed and the changed modules deposited back into the base system. Thus the

environment assumes a major role in coordinating the change process and ensuring the

completeness and consistency of the changes made to the system. The programmer

thereby is relieved of managing the detail of making changes and can concentrate on

the functionality and the complexity of the changes.

4. Summary

We have discussed the different ways in which the Inscape Environment can improve

the productivity of programmers in building large programmed systems.

• Instress formal specifications provide a uniform and common means of

communicating the intent and use of the modules that comprise the system and,

hence, improve the communication among programmers.

• Programmer effectiveness is improved in both measurable and non-measurable

ways: Inscape prevents a substantial set of errors from occurring — potentially

73% of the interface errors (and thus 50% of all the errors) according to the study

reported in [Perry 86d]; and the module interface specifications provide a useful

basis for software reuse (enhanced by environmental assistance while building and

changing the system).

• Inscape, by incorporating knowledge of the specifications, the programming

language, and the rules of program construction, assists in managing the

complexity of building systems by enforcing the consistent use of the specifications

and by managing the details of interconnections and dependencies as the system is

being built.

• Because of this knowledgeable-environment approach, Inscape assists in managing

the process of evolution by tracing the implications and extent of changes,

coordinating those changes among multiple programmers, and guaranteeing the

consistency and completeness of those changes.

It is worthwhile noting that the improvements in productivity result from a set of

coordinated tools and concepts, each attacking a portion of the problem of building

systems. Further, the improvements are attained by paying the price of increased



-- --

formality — by investing a large amount of effort in the formal module interface

specifications at the beginning of the implementation cycle. Without this initial effort,

the desired benefits would not be forthcoming.


