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Abstract 

Taming complexity is a fundamental goal of software engineering.  The core 
techniques that have been successful in practice are those that separate concerns, 
especially variants of architectural abstractions called components and connectors.  
We argue that General Theories of Software Engineering (GTSE) should be organized 
by components and connectors to distinguish conceptually distinct elements and their 
inter-relationships and interdependencies.  Doing so, we argue, separates concerns 
that should be distinct and not conflated, thereby increasing the value of GTSE efforts.   

 

1 Our Position 
Software Engineering (SE) is an extremely broad field. It covers all domains for which software systems 
are feasible. Not surprisingly, there are core SE techniques and principles that are relevant to all domains 
as well as more focused techniques and principles relevant to specific domains. This is clearly evident in 
the typical courses covered in both Computer Science and Software Engineering curriculums.   

A quote from the GTSE 2013 workshop report [1] summarizes an important thread of discussion (the 
quoted references are from the report): 

Participants agreed that theorizing takes many forms [17] and SE entails myriad 
phenomena; for instance, Perry [11] distinguishes between software engineers, SE, 
and software project management. Ralph [12] consequently suggests formulating a 
multi-level GTSE, i.e., a theory that crosses many units of analysis including 
individual, team, artifact, process and project. A core question then is: What might the 
different levels of a GTSE contain? 

We assert that any General Theory of SE (GTSE) should be constructed from two entities: component 
theories and connector theories.  Component theories are about the major components in software 
engineering: economics, management, software engineers, and SE.  Connector theories are about the 
relationships and interdependencies among component theories.  Cognition, for example, is a critical 
element of a component theory about software engineers (people); structural complexity is a critical 
element of a component theory about software systems (SE).  A connector theory would express the 
relationship between cognition and complexity.   

Further, we know from experience that the basic structure of components and connectors is recursive: 
component theories can be expressed as aggregations of more restricted component and connector 
theories; connector theories can be decomposed in terms of simpler component and connector theories.  
We believe that an organizational structure with component and connector theories is fundamental to a 
GTSE; it provides the means to structurally separate conceptually distinct elements and their inter-
relationships and interdependencies.  

In what follows, we provide an example of a GTSE structure in terms of component and connector 
theories (in some cases recursively) to illustrate our approach; it should be a platform to guide and 
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organize future discussions on GTSE.  Our illustrations, by themselves, are not intended to be complete 
theories, but rather suggestive of what is possible. 

2 Motivation for a Theory of Architectural Structure for GTSE 
A sound and foundational principle in SE is the separation of concerns [6].  It is critical to the design and 
implementation of software: organizing and encapsulating concerns of a system that are related is one of 
the fundamental intellectual tools we have at our disposal to manage complexity [1], the core problem in 
building and evolving software systems.  The goal is to separate various concerns and encapsulate them in 
distinct modules. 

We assert that we should do no less in the creation and evolution of theories about the entire enterprise of 
SE.  Just as we use modularity and encapsulation as intellectual tools to manage the ever besetting 
problem of complexity in designing, building, and evolving software, so should we utilize modularity and 
encapsulation – separating concerns – in theories about SE in general. It is only by doing so that we have 
any chance of managing the inherent complexity we face in theories of SE.  Further, it is the only chance 
we have of eliminating unnecessary or accidental complexity that invades and further obfuscates existing 
theories [2]. Component and connector theories structurally separate the myriad concerns in precisely the 
right way. 

Ask yourself: was Einstein’s Theory of Relativity influenced by the price of bagels?  Of course not; it is a 
ridiculous idea.  Was Relativity influenced by the organization or personalities at Los Alamos in the 
1940s?  Of course not.  But did economics, organization, or personalities influence the development of 
the atomic bomb?  Yes, they did.  Theories of science/engineering are separable from theories of 
economics, organization, and human relations.  As we will argue, their influences will lead to the 
selection of particular technologies, organizational structures, economic choices, and management 
practices – as dictated by their conceptually separate theories.  In this sense, SE is no different than other 
engineering disciplines where the conceptual separation of technologies, organizational structure, 
economics, and management are routinely practiced. 

We recognize four major component theories in building and evolving software systems:  

(1) strategic and tactical concerns about a product – economic concerns, 

(2) project management concerns, 

(3) people concerns, and  

(4) technical concerns.   

(1) is primarily of interest to management and entrepreneurs.  (2) is primarily of interest to project 
management.  (3) is a focus of business and project management.  And, we assert, only (4) is of interest to 
software engineers.   

There should be separate (component) theories for each concern. Management and entrepreneurs should 
create their theories to be independent of the theories for project management, independent of theories for 
software technology. These component theories are related by connector theories that define 
dependencies and interactions – the choice of a particular technology should impact a component 
economic theory by altering (or supplying) its distinctive parameter values; the actual details of 
technology are hidden behind these parametrics.  The technical details of how a technology works 
belongs to a component theory about engineering, not management. 

The history of science is replete with separate, albeit related theories, and this is reflected in the 
academics. There are courses on Newtonian mechanics; there are separate courses on the application of 
Newtonian mechanics to Civil Engineering. In the engineering of software, we see similar trends.  There 
is mounting evidence that Domain-Specific Languages (DSLs) or domain-specific models in Model 
Driven Engineering (MDE) are at the forefront of research in specifying target domain-specific systems.  
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Each domain has its own peculiarities; generally two domains have little in common.  But it is the deep 
engineering knowledge and experience that is captured in DSL and/or MDE approaches and their 
integration (which would correspond to our notion of connector theories) that leads to a coherent whole.  
The idea of using a complex universal language is eschewed for an integration of “island” theories-or-
languages that are honed for domain-specific tasks. 

In the following, we explore the idea of component theories and connector theories.  One of the core 
principles of our approach is recursion – the ability to compose component theories and connector 
theories to describe more abstract component and/or connector theories.  To paraphrase a phrase 
popularized by Stephen Hawking, it is “turtles all the way up” or “turtles all the way down” [7]. 

3 Component Theories 
We identify four core component theories together with their sub-component theories: economics, project 
management, software engineers, and SE. 

3.1 Economics 
Businesses worry about strategic and tactical marketing decisions which ultimately come down to 
economics.  While economic decisions may very well impact what software or platform to use (e.g., 
Windows vs. Linux), the details of operating systems are abstracted away, exposing only parametric 
models that represent the economic levers and constraints of alternative technologies.  The basic problems 
addressed by a component theory are those of core competencies, market window (e.g., timing), estimated 
demand, and estimated cost (e.g., resources, effort, and time). 

3.2 Project Management 
Fundamental to any project, software or otherwise, is the monitoring of progress and the management of 
resources.  It can expose and/or reveal the historical way software has been developed (and will continue 
to be developed) in a business.  Decisions about project management may very well impact what software 
technology to use, but again, the details of these technologies must be abstracted away for decision 
making to be practical. 

A theory of project management might be broken down into basic sub-component theories: planning, 
monitoring and metrics, and resource allocation. 

3.2.1 Planning 
A sub-component theory for planning elaborates the issues of effort estimation, resource costs, and 
project planning and project constraints (which in turn are potential sub-sub-component theories).   

Effort Estimation. Currently there are two approaches generally used for effort estimation: function 
points and lines-of-code.  The former has a firmer foundation in that function points are derived from 
software system requirements while the latter are based on estimates on how large the various 
components in the system will be based on past experience.  There are established theories for each 
approach [8]. 

Resource Costs. Resource costs may be broken up into a variety of categories. For example, people, 
hardware, various forms of support, COTS, etc.  What is critical here depends significantly upon the type 
of project, the domain of the system, etc. [9].  

Project Planning. Whatever cost and effort estimations are used for a project, they are critical for project 
planning – that is, they lay out the timelines, milestones, and allocations for a project to succeed.  All this 
is pretty much ordinary management in the domain of software system production [10].   

Project Constraints. Project constraints result from a combination of project plans, business strategies, 
and market forces (so there is an interdependence here, in addition, with economics and hence a connector 
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theory that relates economic considerations with project constraints).  For example, a decision to focus on 
Windows and Linux and ignore Apple, would constrain theories (a.k.a. models) for planning, business 
goals, and marketing. 

3.2.2 Resource Allocation 
Given a plan, various resources are allocated to execute the plan.  A wide variety of resources are needed 
for a software engineering project: space, staff, technology, etc. A component theory of resource 
allocation might well have sub-component theories for effective space utilization (for example, the design 
of IBM’s Santa Teresa Labs [25]), staff structure, etc. 

3.2.3 Monitoring and Metrics 
Given that the project has been adequately planned and resources appropriately allocated, the primarily 
task of project management is to monitor the progress of the project.  In doing this, a variety of metrics 
are used to chart the progress of the project and the quality of the software system as it progresses.  
Interestingly, what metrics are used depends on the CMMI level of the project management organization.  
The failure to meet the established plans results in a very iterative cycle: plan/re-plan, allocate/reallocate 
resources, and monitor with the appropriate metrics [11]. 

3.3 Software Engineers  
One theoretical approach is to view software engineers both as individuals and as members of teams.  In 
the former, we might develop sub-component theories about desired capabilities, training and education, 
and experience and judgment.  In the latter, we might develop sub-component theories about team 
formation and team structure.  Further, we might develop connector theories that relate the various 
characteristics of software engineers to various team formations and structures.  Other possible connectors 
are those relating cognitive abilities to training and education, etc. 

3.3.1 As Individuals 
Cognition.  Cognition obviously plays a critical role in the various activities in the life of a software 
engineer.  For example, Sackman, Erickson and Grant in their seminal study of programmers [3] were 
among the earliest to find an order of magnitude difference in productivity in programmers: “These 
studies revealed large individual differences between high and low performers, often by an order of 
magnitude.”  Equally interesting is the finding that the “two studies suggest that such paper-and-pencil 
tests may work best in predicting the performance of programmer trainees and relatively inexperienced 
programmers.”  

A wide variety of studies about cognition can be found in the Empirical Studies of Programmers (ESP) 
Workshop Series, 1986-1996.  We summarize several studies reported there as examples of the wide 
variety of component cognition theories that are possible in a general theory of software engineering.  In 
addition, they would entail a wide variety of connector theories as well. 

Programmers as Knowledge-Based Understanders.  Letovsky [4] in ESP 1986 provides “an empirical 
study of the cognitive processes involved in program comprehension” – obviously a critical issue in 
the creation and evolution of software systems.  They used “Verbal protocols . . . from professional 
programmers as they were engaged in a program understanding task” from which “several types of 
interesting cognitive events were identified.”   

There are three components in knowledge based understanding: 

• a knowledge base, which encodes the expertise and background knowledge which the 
programmer brings to the understanding task. 
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• a mental model which encodes the programmer’s current understanding of the target 
program.  This model evolves in the course of the understanding process. 

• an assimilation process which interacts with the stimulus materials (target program 
code and documentation) and the knowledge base to construct the mental model. 

Their results are summarized as follows:  

We have shown that data from the verbal protocols can be analyzed into fragments of events. 
We have focused on two types of events, namely questions and conjectures, and described how 
these are organized into a larger event type we call an inquiry.     We developed taxonomies for 
questions and conjectures, and then analyzed the various categories to develop crude theories 
of the mental representations and processes that produced them.  

Distributed Cognition in Software Teams.  Flor and Hutchins [5] introduce a new approach: 
distributed cognition, for collaborative activities and provide a case study of team performance 
while doing system improvements (i.e., during perfective software maintenance).   

Distributed Cognition takes as its unit of analysis a complex cognitive system: collections of 
individuals and artifacts that participate in the performance of a task.  The external structures 
exchanged by the agents of complex cognitive systems comprise its “mental” state and unlike 
individual cognition, where mental states are inaccessible, these states are observable and 
available for direct analysis.  Through analysis of these structures, their trajectories through 
the system, and their transformations, it will be demonstrated that complex cognition systems 
engaged in software development tasks possess cognitive properties distinct from those of 
individual programmers. 

The following is a list of these cognitive properties: 

The Reuse of System Knowledge 
The Sharing of Goals and Plans 
Efficient Communication 
Searching Through Larger Spaces of Alternatives 
Joint Productions of Ambiguous Plan Segments 
Shared Memory of Old Plans 
Divisions of Labor and Collaborative Interaction Systems 

Clearly, a theory of cognition in the context of teams is needed because “Successful software 
development is viewed as a consequence not of a single programmer’s cognition, but of an 
interaction of programmers and development artifacts in a system of distributed cognition.” 
Training, Education, and Experience.  There exists a vast literature (see, for example, [21]) on 
education curricula delineating what our education and training specialists recommend as necessary 
preparation for computer science and software engineering.  ACM’s SIGSCE (Special Interest Group on 
Computer Science Education) sponsors regular conferences presenting the latest research approaches for 
educating and training computer scientists and software engineers.  The IEEE Computer Society’s 
Conference on Software Engineering Education and Training, CSEET, offers a similar research venue.  
Clearly there is a rich set of component and connector theories on achieving educational goals to create 
professional scientists and engineers. 

Judgment. Brooks offers the theory in his Mythical Man Month [2] that great designers are born, not 
made.  They can be mentored and developed, but there is an inherent talent – judgment, if you will – that 
enables them to create a conceptual integrity that is not possible otherwise.  While the designs of ordinary 
designers can be improved with training, education and experience, they will never reach the level of 
quality of those designs from these inherent great designers. 
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3.3.2 As Members of Teams 
Two possible team component theories are those of team formation and team structure.  One could also 
easily consider theories of project structures as well, as is done by Allen in his seminal book, Managing 
the Flow of Technology [12], and Grinter et al., in their paper “The Geography of ‘ 
Coordination: Dealing with Distance in R&D Work” [13].  The interesting question is whether these 
theories would be component or connector theories.  One could easily make the case that a project 
structure is about the relationships and interdependencies among a variety of different teams.   

We note that the difference between a component theory and a connector theory may be more intentional 
than structural for complex connectors. 

Team Formation. One possible component theory of team formation is delineated by McGrath [time-
matters] and confirmed in a case study by Perry et al. [14].  The team building process of McGrath is 
delineated by a sequence of stages of team activity: 

1. Goal choice – inception and acceptance of project goals 
2. Means choice – agreement on the solution of technical issues 
3. Policy choice – resolving conflicts and political issues 
4. Goal attainment – doing the work achieving the intended goals 

We found that critical factors in achieving an effective team formation were time to guild trust among the 
team members, face to face time to build working relationships, clear agreement on the team goals, and 
sufficient communication bandwidth to support the level of the needed interfaces among team members. 

Team Structure. An interesting component theory of team structure is that of an empowered, 
interdisciplinary team [15] that works together throughout the entire project.  This theory contrasts with 
the usual functional theory of team structure where the teams all work together doing the same thing: 
there is a requirements team, an architecture team, a design team, an implementation team, a test team, 
etc., and a decision structure that relied on management decisions about technical issues.  This 
interdisciplinary structure was motivated by two considerations: error injection that occurred during 
handoffs between teams, and time blocked waiting for technical decisions to go up the management 
ladder and back again. 

The interdisciplinary structure enabled the team to increase the effectiveness of intra-team 
communication, to increase the level of parallel development, and to reduce significantly the time lost 
waiting for technical decisions.  The project cycle time was reduced by 25% and defects were removed 
earlier and very few faults were found after integration, thereby increasing the level of overall quality of 
the product. 

In interesting side effect of this new team structure was that managers were able to manage twice as many 
teams, enabling them to focus on management issues and leave technical issues to the interdisciplinary 
teams. 

3.4 Software Engineering 
The most obvious examples of component and connector ideas stem from the vast field of software 
design.  At an abstract level, virtually all design representations created in the last 30 years express 
software designs as graphs: nodes are components and edges are connectors.  Depending on the 
representation, edges can represent relationships (i.e., mathematical relations) or they can represent 
software that permits components to communicate and/or interact with each other. Let’s review some 
basic examples. 

3.4.1 Software Architectures 
Components and connectors express software architectures [16].  Components are objects (that have 
methods, an identity, and typically have state); connectors represent (at a minimum, though they can be 
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more complex) a communication structure (typically provided by an operating system or component 
platform) that enables objects (components) to exchange messages. Classical distributed object platforms 
like CORBA, COM, and DCOM materialized these ideas; Service Oriented Architectures (SOA) are next 
generation distributed-object technologies. 

Separation of concerns is clearly present: computations are distinguished (and modularized differently) 
from that of communications.  A computation could be a large and complex program – which itself could 
be described by components and connectors (e.g., system of systems).  And a connector could be 
implemented as simply as a method call in a programming language, or it could require a sophisticated 
infrastructure (remote call procedures or a component platform) that could itself be a large and complex 
program.   It is here that the recursive nature of component and connectors (and their theories) are clearly 
evident. 

3.4.2 UML Diagrams 
Class diagrams follow a similar lead: distinguish classes from relationships.  Classes represent modules; 
associations are connectors (which can be of two distinct types: inheritance and associations). State charts 
distinguish states (tiny components) from transitions (their connector/relationships). Message sequence 
charts distinguish objects from their communications.  Object diagrams distinguish objects from their 
relationships.   

In all, UML asserts that the complexity of software can be reduced to entities (objects or components) and 
their relationships (connectors). 

3.4.3 Model Driven Engineering 
A metamodel in MDE is a class diagram that captures the fundamental entities and relationships in a 
domain of applications.  Instances of a metamodel, called models, are abstract descriptions of particular 
applications in that domain.   

It is common to compose different metamodels to describe applications that integrate different domains.  
As different domains have different terminologies, entities and relationships, metamodel composition 
requires a third metamodel to define corresponding ideas (entities, relationships) to relate elements of one 
metamodel to another.    Figure 1 shows the basic idea: to compose metamodels 𝑀1 and 𝑀2, a third 
metamodel 𝑊 is needed; the ‘composition’ of 𝑀1,𝑀2,𝑊 yields a single model 𝐶.  In the MDE literature, 
𝑊 has several names: a weaving metamodel or a pullback metamodel; 𝐶 also has several names: the 
woven metamodel or a pushout metamodel.  

 
Figure 1 Metamodel Composition 

Again we see separation of concerns: metamodels are components – units of reusable design.  The 
connectors between models (which, in the general case, can be quite sophisticated and detailed) express 
correspondence relationships between common elements in 𝑀1 and 𝑀2 (themselves entities or 
relationships).1  All of these models can be decomposed into more primitive components (classes) and 
their relationships (inheritance or associations). 

1 Readers may note that the “structure” of Figure 1 is isomorphic to the integration of theories for management (read 
𝑀1) and programming technology (read 𝑀2) in Section 2. 
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3.4.4 Feature Interaction 
A Software Product Line (SPL) is a family of related programs.  Members of a family are distinguished 
by the features they possess.  A feature is a modularized increment in program functionality.  SPL 
technology maps a declarative specification of a program (i.e., a set of features) to its implementation.  In 
general, if there are 𝑛 optional features, there could be up to 2𝑛 distinct programs in an SPL. 

Any pair of features, say 𝑀1 and 𝑀2, can interact. That is, 𝑀1 works correctly when 𝑀2 is absent, and 𝑀2 
works correctly when 𝑀1 is absent.  But when 𝑀1 and 𝑀2 are present in the same program, one or both no 
longer work properly.  A third feature, 𝑊 = 𝑀1#𝑀2, called a resolution, is added so that both 𝑀1 and 𝑀2 
work correctly together.  The composite feature integrates 𝑀1,𝑀2,𝑊 to produce 𝐶. This is a 2-way 
interaction; the ideas generalize to 𝑛-way interactions. 

We deliberately used names for features and feature interactions to call attention to the structural 
similarity of feature composition to metamodel composition in MDE and Figure 1.  Features are 
components in SPLs.  So too are their interactions.  The connectors between them express correspondence 
relationships. 

Readers who are familiar with mediators will recognize the following connection [17].  A mediator (𝑊) 
is a separate component than mediates the interaction of two different components (𝑀1 and 𝑀2) so that 
they work together correctly.  𝑀1 and 𝑀2 are features and their mediator 𝑊 is their interaction resolution.  
The composition of all three is 𝐶. 

3.4.5 Software Design in General 
Software design, in general, is a satisfiability problem: does there exist a design that satisfies a set of 
constraints (a specification, possibly with performance constraints).  Often there can exist many such 
designs, at which point, software design morphs into an optimization problem2: which legal design 
maximizes some property or combination of properties (e.g., memory footprint, estimated performance, 
power usage)? 

4 Connector Theories 
There are relationships and interdependencies among the various component theories.  We believe that 
the connector theories ought to be about direct relationships – one can always do a transitive closure over 
the entire architecture to find the indirect relationships and interdependencies.  And as we may divide 
component theories into sub-component theories, so we may divide a connector theory into sub-connector 
theories to emphasize more finely grained relationships and interdependencies.  We present two examples 
of connector theories: 1) an example of a relationship between software engineers and SE – namely, that 
of cognition, complexity and software structure, and 2) an example of a relationship between software 
engineers and project management – namely, that of software engineer experience and effort estimation. 

4.1 Cognition, Complexity, and Software Structure 
As Brooks [2] points out, complexity is the critical essential characteristic of software systems.  He claims 
that “Software entities are more complex for their size than perhaps any other human construct.”  Wulf, 
London, and Shaw [18] hold a similar view: “Large programs, even not so large programs, are among the 
most complex creations of the human mind.”  Clearly then, complexity is a fundamental problem for SE.  
We claim there are two basic forms of complexity: intricacy and wealth of details.  The former are often 

2 Relational query optimization is a classic example that illustrates this idea [22]. 
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found in deep complex algorithms.  The latter are found in virtually every system: there is a massive 
amount of generally shallow details.3 

But complexity is not entirely an SE problem: it is also a software engineer problem.  This is where the 
cognitive abilities of software engineers come into play.  Curtis et al., in their study on complexity metrics 
and psychological complexity [19], note the following (emphasis added): 

Differences among programs played an important role in these experiments. The 
Halstead and McCabe metrics provided some information about program differences, 
but there were other factors unassessed by these metrics which influence the 
psychological complexity of the programs. The metrics predicted programmer 
performance better on versions of programs which were unstructured or 
uncommented. By reducing the cognitive load on a programmer, information 
available from structured code and comments altered the psychological complexity of 
a program such that it was no longer accurately reflected by the complexity metrics. 

A distinguishing characteristic of psychological complexity is the interaction between 
program characteristics and individual differences, such as programming experience. 

If the ability of complexity metrics to predict programmer performance is to be 
improved, then metrics must also incorporate measures of phenomena related by 
psychological principles to the memory, information processing, and problem solving 
capacities of programmers. 

The primary issue then is the relationship and interdependency between cognitive load and program 
structure.  Examples of SE techniques that reduce cognitive load include structured programming, 
modularity, encapsulation, abstraction, (and the greatest of these is abstraction).  This list is not meant to 
be exhaustive but illustrative of SE techniques usefully related to reducing cognitive load.  It would be the 
goal of this connector theory to cover thoroughly and completely the issues of this relationship and 
interdependence.  Below we discuss basic issues to consider. 

4.1.1 Structured Programming 
As Curtis et al. mention, “information available from structured code and comments altered the 
psychological complexity of a program”.  Of paramount importance is the clarity of program structure 
that was achieved with structured programming.  An additional virtue of structured programming that 
reduces a software engineer’s cognitive load is that the static representation of the program provides 
useful insights into the dynamic structure of that program – that is, the static representation reflects the 
possible dynamic structure of the program.  This is particularly important when analyzing and debugging 
a program. 

4.1.2 Modularity 
A fundamental general problem-solving technique is divide and conquer.  Modularity is an SE technique 
that enables this problem solving technique and reduces cognitive load by limiting the amount of 
information found in an individual component (function, procedure, class, subsystem, etc.).  
Decomposing a system into components provides a fundamental technique for managing complexity, 
both structurally and cognitively. 

3 MDE is a case in point.  Models capture the essence of a problem.  Model-to-text mappings translate models into 
volumes of customized and boilerplate code.  Models are typically much smaller than their code counterparts. 
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4.1.3 Encapsulation 
The cognitive utility of modularity is enhanced significantly when coupled with encapsulation – that is 
organizing the elements of a module such that those elements are closely related to each other along some 
dimension of concern.  A standard metric for measuring this relatedness is cohesion.   

4.1.4 Abstraction 
There are two fundamental forms of abstraction: parametric abstraction, and interface abstraction with 
information hiding.  Parametric abstraction comes in a variety of forms.  The simplest is that or functions 
and procedures where values are abstracted into parameters and the values supplied as arguments.  This 
reduces cognitive load in two ways:  (1) it simplifies a multitude of similar pieces of code and abstracts 
the differences to make it simpler to understand; and (2) it reduces the amount of code significantly where 
there is pervasive use of abstraction (i.e., it reduces complexity relative to the amount of details in a 
system). A further cognitive advantage due to parametric abstraction is that it localizes changes and 
reduces the effort and cognitive load of evolving the system structure. 

There are more complex forms of parametric abstraction that are useful: type abstraction, function 
abstraction, etc.  Interface abstraction with information hiding is one of our most powerful SE techniques 
in managing complexity and reducing cognitive load.  The purpose is to present an abstract interface that 
is much simpler than the implementation and the concepts needed for that implementation.  A well-
understand example of this is provided in a typical file system.  Its interface provides a very simple 
abstraction compared to its hidden implementation that must deal with file control blocks, disc allocation 
and de-allocation, the device complexities of reading and writing data from secondary storage, etc.  This 
is a significant reduction in cognitive load. 

Equally important is that the abstract interface provides a conceptual vocabulary – a little language – that 
provides a high level of abstraction and concepts appropriate to a particular small domain that make it 
much simpler and easily understood.  An SE structural technique that exploits this is called a virtual 
machine where the machine is built in successive layers with each layer embodying higher levels of 
abstraction and richness of expression making each layer easy to understand and easily implemented with 
the appropriate concepts from the lower layers.  A well-understood example of this is the structure 
provided by operating systems and programming languages: an assembly language provides the first layer 
of abstraction over the bare machine; the system implementation language and the operating system 
provide a much more useful layer (which is often split into two layers: the kernel and the OS services); 
and a programming language  with its run-time system to provide an even higher layer of abstraction with 
which to build applications (which should follow this virtual machine approach as well in its implemented 
structure). 

4.1.5 Summary of This Connector Theory 
We provide this as an example (though incomplete) of the relationship between system structure and 
cognition – that is between software engineers and SE.  Our presentation is but a start; there is much more 
to the rich connector theory that should be considered to fully understand the relationship between 
cognition and SE techniques and structures. 

A useful way of doing this would be to decompose cognition into various sub-elements and develop a 
focused connector theory for each of these elements in their relationship and interdependence on SE 
techniques and structures. 

4.2 Modularity, Encapsulation, Abstraction, and Object Oriented Technology 
While logically modularity, encapsulation and abstraction are distinct concepts, they work most 
effectively as mechanisms for managing complexity when integrated together. OO technology does 
precisely that: integrate them together – thereby forming a succinct connector theory about their effective 
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use.  The notion of an object as state (data) together with its operations (on that data) provides the 
criterion for encapsulation.  The class structure provides a mechanism for modularization and abstraction 
for this form of encapsulation, providing also a variety of choices as to how much and what is open or 
hidden (i.e., abstracted). 

Abstract data types (as supported, for example, by Ada Packages [26]) provide a similar, but stricter, 
combination of these three mechanisms 

4.3 Project Planning and Software Engineer Time Estimates 
A critical part of project management’s planning is the input from software engineers about their 
estimates of the size and time.  For the purposes of illustrating an interesting connector theory, we focus 
on time estimates.  Time estimates were a critical part of a series of time studies by Perry, Staudenmeyer, 
and Votta at Bell Labs [20].  The focus of these studies was on the effectiveness of software engineers in 
the context of a large system evolutionary development.  One of the more interesting results was the fact 
that developers were only 40% effective – that is, they were blocked from work on the development 60% 
of the time; they were waiting for a needed resource before they could continue. 

This effectiveness factor of 40% has a significant effect on time estimation and the importance of the 
distinction between lapse time and race time.   Lapse time is the time a task takes from start to finish; race 
time is the actual time spent working on the task.  Ideally lapse time and race time are the same.  
However, ideal conditions rarely happen.  In these studies of how developers spent their time, the 
difference between race time and lapse time was a factor of 2.5 [20].  In the projects studied, software 
developers tended to give their time estimates in terms of race time.  To derive a useful time plan of the 
project, the project manager had to factor in the projected difference between these race time estimates 
and expected lapse time estimates.  In this case, the managed and derived, through project manager 
experience in this context, the estimated factor of 2.5.  These studies validated his conversion factor. 
Thus, while a relatively small connector theory between project management’s project planning and 
software engineer’s time estimates (as a part of the larger issue of effort estimates), the distinction 
between race and lapse time is critical and needs to be correlated between software engineer experience 
and project management experience for accurate project planning. 

 

5 Conclusions 
We believe that a full general theory of software engineering is akin to a very large complex software 
system and as such needs to be decomposed appropriately as is done with our software systems.  To this 
end, we propose structuring our theories using two types of elements: component theories and connector 
theories, to enable us to adequately and succinctly treat separate concerns.  As an example, we propose 4 
high level components to represent the entire software enterprise: business strategies and economics, 
project management, software engineers, and software engineering.   

We illustrate our approach giving examples of component decompositions and connector theories that 
relate the elements in one component theory with those in another.  Each of these component theories has 
its own domain specific properties and structure just as a software system architecture has its sub-
architectures.   

The simple elegance of this approach provides two basic elements that can be used recursively to expand 
the full space of general theories of software engineering.  We can then modularize our theories and 
encapsulate related aspects together thus managing the complexity of our general theory. 
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