ACM SIGSOFT Software Engineering Notes Page 47

September 2013 Volume 38 Number 5

Report on the Second SEMAT Workshop on General Theory of
Software Engineering (GTSE 2013)

Pontus Johnson
KTH Royal Institute of
Technology
Stockholm, Sweden
pontusj@ics.kth.se

Pan-Wei Ng
Ivar Jacobsen International
Singapore
panwei@ivarjacobson.com

Paul Ralph
Lancaster University
Lancaster, United Kingdom

paul@paulralph.name

Klaas-Jan Stol
Lero—The Irish Software
Engineering Research Centre
University of Limerick, Ireland

Michael Goedicke
University of Duisburg-Essen,
Germany
michael.goedicke@paluno.uni-
due.de

Kari Smolander
Lappeenranta University of
Technology, Finland
kari.smolander@Iut.fi

klaas-jan.stol@lero.ie

laakov Exman
The Jerusalem College of
Engineering, Israel

iaakov@ijce.ac.ll

Dewayne E Perry
The University of Texas at Austin
Austin, TX, USA
perry@ece.utexas.edu

DOI: 10.1145/2507288.2507324 http://doi.acm.org/10.1145/2507288.2507324

ABSTRACT

Software engineering needs a general theory, i.e., a theory that
applies across the field and unifies existing empirical and theoreti-
cal work. General theories are common in other domains, such as
physics. While many software engineering theories exist, no general
theory of software engineering is evident. Consequently, this report
reviews the emerging consensus on a general theory in software
engineering from the Second SEMAT General Theory of Software
Engineering workshop co-located with the International Confer-
ence on Software Engineering in 2013. Participants agreed that a
general theory is possible and needed, should explain and predict
software engineering phenomena at multiple levels, including social
processes and technical artifacts, should synthesize existing the-
ories from software engineering and reference disciplines, should
be developed iteratively, should avoid common misconceptions
and atheoretical concepts, and should respect the complexity of
software engineering phenomena. However, several disputes re-
main, including concerns regarding ontology, epistemology, level of
formality, and how exactly to proceed with formulating a general
theory.

Keywords
General Theory, Software Engineering, Workshop Report.

1. INTRODUCTION

The General Theory of Software Engineering (GTSE) initiative pro-
motes theory development and theory-driven empirical research on
all aspects of software engineering. It aims to eventually produce
a GTSE, i.e., a theory that broadly explains software develop-
ment phenomena, unifies existing theory, facilitates a cumulative
research tradition and supports Software Engineering (SE) edu-
cation and practice. This report summarizes breakthroughs from
the 2013 GTSE Workshop (GTSE ’13).

In this report, the term “software engineering” is used broadly
to refer to all activities involved in conceptualizing, creating and
modifying software intensive systems. A theory is simply a collec-
tion of interconnected ideas intended to explain, describe, analyze
or predict some phenomena. A general theory is a theory that

applies to a broad range of phenomena, across several levels of
analysis, or consolidates several theoretical perspectives.

One theme that emerged during GTSE 13 was the necessity to
build consensus around the need for, scope of, and composition of
a GTSE. Adopting a consensus approach should increase not only
the initial GTSE’s quality (by integrating the ideas of many par-
ticipants) but also its palatability (as participants come to support
a theory they view as encapsulating their own ideas). Moreover,
simply proposing a limited initial theory may attract criticism
for either being too general (‘another theory of everything’) or
confined to a single perspective. Such initial and limited theories
provide a starting point, which can evolve into better and sounder
theories.

Consequently, this paper explores the emerging consensus, and
limits thereof, concerning properties of a GTSE (Section 2). We
then briefly describe the history and structure of the workshop
(Section 3) and offer some thoughts on the future of the GTSE
project (Section 4).

2. EMERGING CONSENSUS ON A GTSE

The presented papers and ensuing discussion revealed many areas
of consensus and several remaining disputes concerning GTSE.
These themes both reaffirm and build on the five needs identified
in the GTSE 2012 workshop — (1) sound theoretical foundations
for SE, (2) diverse theoretical approaches for formulating a GTSE,
(3) consensus on a primary dependent variable (possibly Software
Engineering Success), (4) better metrics and instruments for SE
variables, and (5) better descriptive research [14, 12].

2.1 Agreements

While some academics may react skeptically to the possibility of a
general theory of software engineering, general theories are quite
common in all branches of science [9]. Well known general theories
include the Standard Model (physics), the Periodic Table of Ele-
ments (chemistry), Big Bang Theory (cosmology), the Theory of
Evolution (biology), Structuration Theory (sociology), Supply and
Demand (microeconomics), the General Theory of Employment,
Interest and Money (macroeconomics), the General Theory of



ACM SIGSOFT Software Engineering Notes Page 48

Crime (criminology) and the Theory of World Conflict (political
science).

Participants agreed that general theories are neither unusual nor
suspicious and that SE has no unusual property that should pre-
clude general theory. Participants agreed that theorizing takes
many forms [17] and SE entails myriad phenomena; for instance,
Perry [11] distinguishes between software engineers, software engi-
neering and software project management. Ralph [12] consequently
suggests formulating a multi-level GTSE, i.e., a theory that crosses
many units of analysis including individual, team, artifact, process
and project. A core question then is: What might the different
levels of a GTSE contain?

Building on the previously identified need for a clear dependent
variable [14], Ekstedt [3] suggests that a GTSE should identify
the primary drivers of Software Engineering Success. Further-
more, a GTSE should also explain the social process by which
software is created [12] including software practices [16] and the
personal values of participants [1]. Moreover, a GTSE should also
encompass automated software design—especially given increasing
possibilities for automation into the future [2]. Additionally, clear
and agreed terminology is needed to facilitiate communication and
understanding of the GTSE [4, 10].

More generally, a GTSE may incorporate several existing theo-
ries from SE reference disciplines. Erbas and Erbas [4] suggest
Transaction Cost Economics as a possible theoretical foundation
for explaining why developers adopt different approaches to SE.
Similarly, Smolander and Piivirinta [16] recommend Reflection-
in-Action as a theoretical framework for the design process. Mean-
while, Ralph [12] suggests several theories at different levels of
analysis—Complexity Theory (project), Sensemaking-Coevolution-
Implementation Theory (process), Boundary Objects (artifact),
Transactive Memory (team) and Cognitive Bias (individual).

There are many viable ways of approaching GTSE development.
Adolph and Kruchten [1] adopt a grounded theory approach. Oth-
ers focus on adapting or extending existing theory [12, 16, 4].
Others take a more rationalistic approach [11, 2]. While the best
approach is not clear (as discussed below), it is clear that inherent
complexity of formulating a GTSE necessitates iterative theory
development [3].

Taking a different perspective, we can also ask what mistakes or
misconceptions a GTSE should avoid? Smolander and Paivirinta
[16] warn that GTSE should be based on observations of real-world
practice to avoid idealized or otherwise inaccurate assumptions.
Meanwhile, Exman examines four specific dangers, e.g., GTSE
should respect the emergent properties of running software, i..e,
properties of running software not evident from static source
code. More generally, SE appears replete with isolated and im-
plicit theory fragments [17] that can be further evolved in more
complete theories through a process of theorizing and empirical
research. One purpose of a GTSE, then, is to integrate existing
theory fragments and avoid the piecemeal empiricism prevalent in
evidenced-based SE [17].

Related to the emergent properties of running software is the gen-
eral role of complexity in software artifacts, processes and projects.
As what people say they do rarely reflects what they should or
actually do, more qualitative research on software processes is
needed to better understand the complex reality of software pro-
cesses [16, 1]. Similarly, Exman [5] suggests that existing logics
are insufficient for describing the complex structures of modern

September 2013 Volume 38 Number 5

software systems. Consequently, Ralph [14] suggests drawing from
Complexity Theory and Complex Adaptive Systems to better
model and understand software projects.

2.2 Disputes

Notwithstanding broad agreement concerning the GTSE initiative,
participants expressed differing views on several issues. Most
disputes center on approaches for developing GTSE, ontology,
epistemology, the present state of the field and the desirable level
of formality.

Some participants take a rationalist approach to theory building
[11, 2, 5] while others favor inductive approaches [3, 16, 1] and yet
others attempt to synthesize or adapt existing theory [14, 4]. Stol
and Fitzgerald [17] present a possible resolution by illustrating
different research paths empirical research may take. For example,
while Adolph and Kruchten [1] criticize logico-deductive “arm-chair”
theorizing, following an initial arm-chair session with extensive
iteration between empirical research and theory reformulation
should satisfy even the most radical empiricist.

Speaking of empiricists, the best epistemological position for for-
mulating a GTSE is not clear or agreed. Although epistemological
positions are rarely explicitly stated in SE papers or spoken discus-
sion, participants invoked at least four — rationalism, Popperian
falsificationism, interpretivism and contemporary positivism (post-
positivism). Here, rationalism is the view that our intuitions are a
valid source of knowledge and may even be superior to knowledge
derived from sense experience. The problem with rationalism
is that extensive psychological research on heuristics, illusions,
biases, emotion and rationality conclusively demonstrate that our
intuitions are often wrong. Falsificationism, as popularized by
Karl Popper, is the view that science progresses by empirically
discrediting bad theories and retaining any theory that withstands
our best attempts to discredit it. The problem with falsification-
ism is that it was refuted by Quine’s philosophical meditations on
naturalized epistemology in the 1960s. Briefly, when observation
fails to match a prediction, four explanations are evident: 1) the
theory is wrong; 2) the observation is an error; 3) the prediction
was improperly derived from the theory; and 4) the calculations
relating the observation to the prediction are incorrect. Conse-
quently, many unpredicted observations do not categorically refute
a theory any more than many predicted observations categorically
prove it. Interpretivism is broadly the view that while research
methods appropriate to physical (“natural”) phenomena may be
inappropriate for studying social phenomena, social science should
focus on the meaning ascribed to events and objects by the people
being studied. One problem with interpretivist approaches in SE
specifically is, as mentioned above, what people say they do and
what they actually do often differ, not to mention the still limited
acceptance of pure qualitative studies in top-tier journals in the
field of SE [15, p.147]. Finally, while still an evolving philosophy,
contemporary positivism holds that observation remains the best
way to investigate phenomena, but accepts that evidence for or
against a theory neither proves nor falsifies it, respectively. One
way out of this dilemma is to focus on comparatively testing rival
theories. In this way, knowledge becomes the best existing theory
rather than a justified, true belief. However, this too is problem-
atic for evaluating a GTSE as an appropriate rival theory is not
evident.

Participants also brought differing conceptualizations of the present
state of the field. Exman [5] for example views the field as being pre-
paradigmatic while Stol and Fitzgerald [17] characterize SE as an
archipelago of loosely-coupled theory fragments derived from piece-



ACM SIGSOFT Software Engineering Notes Page 49

meal empirical research. In contrast, Smolander and P&ivirinta
present the field in terms of two, conflicting paradigms. “The
dominant view,” based on Technical Rationality, “views software
development as a methodical, plan-centered, approximately ratio-
nal process of optimizing a design candidate for known constraints
and objectives,” while the alternative view, based on Reflection-in-
Action, “views software development as an amethodical, improvi-
sational, emotional process of simultaneously framing the problem
and building artifacts to address it” [13]. Several papers [11, 2, 4]
appear more consistent with Technical Rationality while others
[12, 16, 1] appear more consistent with Reflection-in-Action.

A possibly related theme concerns the desirable level of formality.
Physical science theories are often expressed as mathematical laws,
e.g., relativity, Maxwell’s equations. However, social science con-
texts often resist such formal descriptions due to their multifarious,
probabilistic causal webs. Therefore, it is unclear how formal a
GTSE should be, or to what extent the desirable level of formality
varies across units of analysis. Perhaps, for example, artifact prop-
erties may be described more precisely than team dynamics. While
some participants (e.g. [2]) suggested more algebraic descriptions,
others are concerned that attempts to increase formality may lead
to more idealistic, less empirically valid and practically usable
theory.

3. HISTORY AND STRUCTURE OF THE WORK-

SHOP

After a successful first workshop in Stockholm, Sweden [14], GTSE
’13 was held on May 26th in conjunction with the International
Conference on Software Engineering, ICSE 2013, in San Francisco
[9]. The GTSE workshops are organized by SEMAT (Software En-
gineering Methods and Theory), an informal organization founded
by Ivar Jacobson, Bertrand Meyer and Richard Soley to make
the work and results from industry, research and education more
relevant to one another and thereby to the state of software en-
gineering. SEMAT organizes its efforts in two areas—the theory
area and the practice area.

The practice area strives to establish a set of widely agreed elements
to describe software engineering and its practices. To this end,
the practice area has submitted a standard proposal, known as
“Essence” [6], to the Object Management Group (OMG).

The theory area, headed by Michael Goedicke and Pontus John-
son, initiated the GTSE work when Mathias Ekstedt and Pontus
Johnson joined the SEMAT initiative after writing extensively on
the potential for general theory in SE [7]. The theory area core
argument is that while the SE field has produced many theories,
no general or unifying theory is evident; however, a GTSE is both
possible and desirable [8]. The theory area has since organized the
2012 and 2013 GTSE workshops, and a special issue of Science of
Computer Programming on GTSE is being planned.

The aim of the GTSE initiative and workshops is to promote
and facilitate the scientific process of proposing, debating, testing
and revising general theories of SE. The implicit goal is to push
SE toward a state where one or a few theories constitute the
scientific core of the field and provide communicable knowledge
and accurate predictions of central SE phenomena. Consequently,
the workshop called for papers proposing aspects of a GTSE or
discussing questions including:

"http://www.journals.elsevier.com/science-of-computer-
programming,/

September 2013 Volume 38 Number 5

e How can a general theory of SE be of practical use?
e What are the objectives of such a theory?

e What questions should it address?

e What is a useful definition of theory?

e How foundational/universal should a general theory of SE
be?

e What should its main concepts be?

e How formally or informally should it be expressed?

The workshop received 26 submissions, each of which underwent
at least three and on average four reviews. Based on the reviews,
ten of the papers were accepted. The accepted papers consid-
ered diverse aspects of software engineering theories including
mathematical, engineering, management and sociological.

The workshop proceeded in three parts:

1. Introduction by the organizers and review of general theories
in other disciplines;

2. Paper presentations;

3. Open discussion and consensus building.

For consensus building, participants first voted on which question
to discuss and then discussed questions in descending order of
popularity until time ran out. The questions discussed were as
follows.

e Do we agree on the purpose of a general theory of SE? What
would it be good for?

e Should we look for underlying theories of SE? What could
they be? Social theories, technical theories, economic theo-
ries?

e Which approach is the most practical?

e Should it be expressed formally? If formalized, what is a
suitable language?

e How to evaluate theories, meta-theories?
e Evolution
e Challenges in generating GTSE?

e What questions and subquestions should it address? What
should its main concepts be?

e How to build a GTSE? Starting from domain-theory?
e [s general theory meta-theory?

e How foundational/universal should a general theory of soft-
ware engineering be?

e Sampling

e What is a useful definition of theory?



ACM SIGSOFT Software Engineering Notes Page 50

4. CONCLUSIONS

In summary, the second SEMAT General Theory of Software
Engineering workshop was very successful. The relatively large
number of submissions suggests there is considerable interest from
the SE research community in this topic. The papers and open
discussion clearly built on the previous workshop and furthered
the GTSE formulation process. It became clear at this workshop
that a consensus approach was needed and participants reached
several areas of consensus, including the following;:

e General theories are common across physical and social sci-
ences.

A GTSE should explain myriad SE phenomena across several
levels of analysis (individual, team, artifact, etc.).

e A GTSE should address both the process of SE and the
antecedents of key variables including software engineering
success.

A GTSE may incorporate theories and theory fragments
from SE and reference disciplines.

A GTSE should respect the complexity of SE phenomena.

In addition to formulating a GTSE, future research may address
several remaining disputes, including the appropriate epistemology
for a GTSE and the desirable level of formality. More research on
the dimensions and measurement of software engineering success
is also needed. Finally, we invite submissions to and participation
in future GTSE workshops. Following this year’s success, we plan
to organize GTSE 2014 as an ICSE workshop, i.e., in Hyderabad,
India in June.

5. ACKNOWLEDGEMENTS

We extend our thanks to the participants of the workshop:

Alexey Nikitine Arbi Ghazarian Brian Fitzgerald

Cengiz Erbas Dewayne Perry Don Batory
Hausi Miiller Taakov Exman Ira Baxter
Ivar Jacobson Kari Smolander Karl Reed

Klaas-Jan Stol
Marco Kuhrmann
Miguel Trujillo
Paul Ralph
Shihong Huang

Konstantin Weitz
Mathias Ekstedt
Mira Kajko-Mattsson
Philippe Kruchten
Steve Adolph

Magno Cavalcante
Michael Goedicke
Pan-Wei Ng
Pontus Johnson
Tero Paivéarinta

6. REFERENCES

[1] S. Adolph and P. Kruchten. Generating a useful theory of
software engineering. In 2nd Workshop on a General Theory
of Software Engineering, pages 47-50, 2013.

[2] D. Batory. Why (meta-)theories of automated software
design are essential: A personal perspective. In 2nd
Workshop on a General Theory of Software Engineering,
pages 19-22, 2013.

[3] M. Ekstedt. An empirical approach to a general theory of
software (engineering). In 2nd Workshop on a General
Theory of Software Engineering, pages 23-26, 2013.

[4] C. Erbas and B. C. Erbas. On a theory of software
engineering. In 2nd Workshop on a General Theory of
Software Engineering, pages 15-18, 2013.

[5] I. Exman. Speeding-up software engineering’s escape from its
pre-paradigmatic stage. In 2nd Workshop on a General
Theory of Software Engineering, pages 1-4, 2013.

September 2013 Volume 38 Number 5

[6] I. Jacobson, P.-W. Ng, P. E. McMahon, I. Spence, and
S. Lidman. The Essence of Software Engineering: Applying
the SEMAT Kernel. Addison-Wesley Professional, 2013.

[7] P. Johnson and M. Ekstedt. In search of a unified theory of
software engineering. In International Conference on
Software Engineering Advances, 2007.

[8] P. Johnson, M. Ekstedt, and I. Jacobson. Where’s the theory
for software engineering? IFEEFE Software, pages 94-96, 2012.

[9] P. Johnson, I. Jacobsen, M. Goedicke, and
M. Kajko-Mattsson. 2nd semat workshop on a general theory
of software engineering (gtse 2013). In International
Conference on Software Engineering, pages 1525-1526, 2013.

[10] P.-W. Ng, I. Jacobson, S. Huang, and Y. Wu. On the value
of essence to software engineering research: A preliminary
study. In 2nd Workshop on a General Theory of Software
Engineering, pages 51-58, 2013.

[11] D. E. Perry. A theoretical foundation for software
engineering: A model calculus. In 2nd Workshop on a
General Theory of Software Engineering, pages 39—46, 2013.

[12] P. Ralph. Possible core theories for software engineering. In
2nd Workshop on a General Theory of Software Engineering,
pages 3538, 2013.

[13] P. Ralph. Two paradigms of software design. 2013.
arXiv:1303.5938 [cs.SE].

[14] P. Ralph, P. Johnson, and H. Jordan. Report on the First
SEMAT Workshop on General Theory of Software
Engineering (GTSE 2012). ACM SIGSOFT Software
Engineering Notes, 38(2), 2013.

[15] P. Runeson, M. Hést, A. Rainer, and B. Regnell. Case Study
Research in Software Engineering: Guidelines and Examples.
Wiley, 2012.

[16] K. Smolander and T. Péivirinta. Forming theories of
practices for software engineering. In 2nd Workshop on a
General Theory of Software Engineering, pages 27-34, 2013.

[17] K. Stol and B. Fitzgerald. Uncovering theories in software
engineering. In 2nd Workshop on a General Theory of
Software Engineering, pages 5—14, 2013.





