
Experiences with an environment generation system

Steven S. Popovich,1 William M. Schell, and Dewayne E. Perry

AT&T Bell Laboratories, Murray Hill, NJ 07974

Abstract

We present our experience using the Gandalf
environment generation system as a prototyping vehicle
for the Inscape Environment. Our positive experience
included experimentation, incremental evolution,
multiple views, the coupling of semantic and editing
actions, and the use of the domain-specific facilities. Our
negative experience consisted primarily of problems with
presentation and object management. On the whole, our
experience was positive.

1. Introduction

This paper is about our experiences using a generation
facility, specifically the Gandalf system [1], as a
prototyping technique for the Inscape Environment [2].
It is not about experience with a syntax editor; Zelkowitz
[3] treats this area, discussing a similar (specification-
based environment) application. In this paper, we will
try to avoid, as far as possible, discussing problems
specific to syntax editing.

We first provide a general view of the Gandalf System
and the Inscape Environment. We then present our
positive and negative experiences. Finally, we
summarize and evaluate our experiences.

2. The Gandalf System

Gandalf is a generation system for user environments

__________________

1. Department of Computer Science, Columbia University, New York
NY 10027. The work reported here was done at AT&T Bell
Laboratories during the summers of 1989 and 1990.

based on structure editing. An environment is specified
in terms of a grammar, which describes the language
(such as a programming or specification language) and
associates attribute data structures and semantic actions
with the constructs of the language. Subsidiary
grammars may be specified for complex attributes such
as symbol tables. All of these grammars are entered into
a grammar editor, which is itself generated using
Gandalf, and are used by the system to generate a set of
tables describing the language to the editing kernel.

A Gandalf-based environment consists of four parts: A
structure editor kernel, which is simply linked into each
executable, a set of grammar tables describing the
language to the kernel in terms of its abstract syntax, one
or more concrete syntax views, and a collection of action
routines written in the extension language, ARL. These
action routines are further divided into daemons,
functions, and procedures, which implement semantic
checking and other actions that occur as side effects of
normal editing commands, and extended commands,
which, true to their name, add commands to the editor
that perform environment and application-specific
actions. The ARL extension code is written using
another Gandalf editor, configured with the syntax and
static semantics of the high-level tree manipulation
language. The ARL editor generates C code (about 3
lines of C for each line of ARL) from the tree-oriented
ARL code, and the code is then linked with the kernel
and the grammar tables to form a Gandalf editor.

3. The Inscape Prototype

The Inscape Environment is centered around two
orthogonal concepts:

• the constructive use of formal module interface
specifications; and



• the support and enforcement of cooperation by means
of environmental structures, mechanisms and
policies.

The first of these concepts is used to address the
problems of system construction and evolution, both in
terms of programming-in-the-small and programming-
in-the-large. The second concept is used to address the
problems of programming-in-the-many and has been
build as a separate prototype [4].

A prototype of the environment has been built,2 using
Gandalf, that consists of the following components: A
subset version of Instress, the module interface
specification language (with a decidable subset of the
underlying logic); a subset version of Inform, the module
construction component (subsetted by focusing on
generic programming language constructs, successful
operation results, and simple object descriptions); and
Inquire [5], the predicate-based browser and deductive
retrieval mechanism. In addition, the syntactic version of
the full specification language complete with various
interactive and publication views has been implemented.

Inform uses Instress specifications as the basis for
interactive, incremental analysis, using instantiated
interfaces for function calls and generated interfaces for
sequence, selection and iteration to generate function
interfaces and to perform error detection [6]. Inquire
uses these interfaces together with the symbol table
information as the basis for browsing and deductive
retrieval facilities for both the user and the system.

4. Positive Experience

There are a number of obvious advantages to using a
system like Gandalf to generate the Inscape Prototype.
These, in fact, were important factors in the original
decision to use Gandalf as the prototyping base.

First and most important, it is possible to build a working
prototype very quickly and to add functionality to it
incrementally. To generate an editor for a programming

__________________

2. The primary work on the Instress specification editor and the
Inscape Prototype has been done by Dewayne Perry; Steve
Popovich revised the symbol table and implemented Inquire; Bill
Schell implemented the SunWindows package as part of a prototype
applying Inscape to the design of finite state machines.

language or a specification language, it is necessary only
to write its grammar. The Gandalf kernel provides a
screen-oriented editor for syntax trees, and allows us to
experiment with our environment’s presentation of data
by modifying the unparsing schemes used in displaying
the trees to the user and by changing the windowing
specifications. Since Gandalf provided us with an
editing and presentation layer rather than requiring us to
construct one ourselves, we were able to concentrate on
the important issues of syntax and semantics at a very
early stage.

Second, Gandalf allows incremental addition of
statements to the programming and specification
languages, making it easy to extend them over time. The
initial prototype had only function call and sequence as
language statements. Extending the prototype to include
both the syntax and semantics for selection and iteration
was straightforward. Another useful facility in the
Gandalf system is that of Transformgen [7] which builds
transformations from the changes to the grammar in such
a way that trees built under the previous version of the
grammar can be automatically transformed into trees of
the current version. This has been particularly useful in
refining the definition of Instress and evolving the editor
for it. Using Transformgen, the examples evolve along
with the editor.

Third, Gandalf allows incremental addition of unparsing
views. Multiple views enable us to display the syntax
tree to the user in various ways: as code alone, code
annotated with interfaces, specifications alone, or any of
several other options. The most recently added
unparsing view automatically generates a troff
document of the specification using multiple fonts and
indentation to emphasize and differentiate various
aspects of the interface.

Fourth, it is very easy to tie semantic actions (such as
checking that preconditions are satisfied) to editing
actions (such as adding a statement to a function) in a
Gandalf editor. It is simply a matter of writing and
declaring a daemon (along with its supporting attributes,
functions and procedures) for the appropriate node type.

Finally, Gandalf provides a high-level language (ARL)
for tree editing, which further simplifies the
implementation of semantic actions and extended
commands. There are several advantages to using such a
language. First, the domain-specific control and data
structures make it easy to experiment with semantic
processing and internal representations of the program
tree. Second, the encapsulation facilities make it easy to



experiment with the internal representations of such data
structures as the symbol table. For example, we were
able to completely reimplement the symbol table in a
very short time and with minimal effects on the rest of
the prototype. The daemon invocations remained the
same, and only a small amount of additional tree walking
was needed to collect the additional information needed
by the added functionality in the newer symbol table
package. Third, the abstraction facilities make it easy to
reuse existing code. For example, we were able to reuse
much of the predicate manipulation code used for
predicate propagation in the Inform subsystem to
manipulate the query predicates for deductive retrieval in
the Inquire query subsystem.

5. Negative Experience

Although Gandalf’s advantages as a generation system
were substantial, we experienced problems with other
aspects of Gandalf during the construction of the
prototype. These divide into three general classes:
dealing with the on-screen presentation of information to
the user; dealing with the Gandalf’s management of its
data objects containing the program, the specifications,
and other information; and dealing with the the lack of
appropriate support tools in the underlying environment
(Smile [8]). The presentation problems are mainly due to
the age of Gandalf, and the object management problems
are attributable to the fact that Gandalf was designed for
language-specific editors, which do only a relatively
small amount of static semantic checking. Inscape’s
semantic requirements greatly exceed those of a typical
programming language, so we have run afoul of
assumptions that were made in the implementation.

5.1 Presentation Issues

The root of our problems with presentation lies in the
fact that the Gandalf user interface is modeled after the
display version of Emacs, which was the state of the art
in the late 1970s. The Gandalf user interface has been
modified only slightly since then. Although the basic
design of the windowing subsystem and its interface is
sound, its implementation is simply outdated. It has a
limited number of windows arranged vertically on the
screen, and window management is primitive. This was
unsatisfactory for our prototype, which derives a large
amount of auxiliary information about the program under

construction that is inappropriate to display in the main
window with the code. This auxiliary information
includes such information as the specification-level
interface for the current statement and the current block,
including the "propagated preconditions" which must be
true before the statement or block begins execution, and
the "propagated postconditions" which will be true after
it finishes.

We also want to be able to display semantic error
messages in a separate window, with links maintained
back to the program, so that the user can treat the error
window as a menu: by ‘‘selecting’’ an error, the user
‘‘selects’’ the point in the program where the error
occurred. None of this could be done using the standard
Gandalf user interface without running into the basic
limitations on the amount of display space available; we
would have ended up with a large number of two- and
three-line (albeit, scrollable) windows on the screen,
none of which could show enough information to be of
reasonable use.

Properly adding a windowing capability to Gandalf —
that is, integrating it with the existing interface rather
than simply grafting it on separately — is too difficult a
task to expect an environment implementor to undertake
(ironically, because of one of Gandalf’s advantages we
mentioned previously). The default user interface is in
the Gandalf kernel, and (because the Gandalf system is
so well integrated) there is no way to replace it without
wholesale kernel alterations.

As a partial solution, we added a separate module
containing code for creating and modifying Sun
windows, with its own interface, separate from the
Gandalf windowing interface, and with no direct
connection to the standard Gandalf interface. The barrier
is the mapping of graphics operations, mouse I/O and
keyboard I/O into the Gandalf kernel paradigm. Given
these limitations, we could not, for example, read input
from a Sun window. We did, however, find a way to
automatically update the display in the SunWindow
when the underlying Gandalf tree changed by judicious
addition of deletion and replacement code in the
appropriate daemons to mirror the changes in the tree.
We have been able to work around some of these
technical problems, but find new difficulties whenever
we try to change the user interface, because the basic,
underlying problem — an inflexible, non-extensible user
interface in the Gandalf kernel — remains unresolved.



5.2 Object Management Issues

The problems with Gandalf’s object management divide
into two subproblems: "syntax tree bias" and reference
semantics. When we mention syntax tree bias, we’re not
breaking our promise to steer clear of problems specific
to syntax editors. This is merely the manifestation, in a
structure editor, of a far more common problem in CASE
tools: Namely, the editor knows how to deal with only
one kind of data — in this case, syntax trees. No other
data objects can be edited. This is fine, but Gandalf also
makes the assumption that the objects that an
environment wants to save to the disk are the same kind
of data — syntax trees again. Unfortunately, the Inscape
Prototype runs afoul of these assumptions in two ways.

First, we want to save structures other than syntax trees
to disk. The prototype’s internal symbol tables, for
example, are simple linear lists implemented as a syntax
tree. They could be much more efficiently implemented
as hash tables, if only it were possible to add hash tables
as a data type that could be saved to disk. This adversely
impacts efficiency and makes it less realistic to expect to
be able to build "large" systems in the environment; the
symbol table implementation slows down both the query
commands and the semantic verification checks to the
point where they are prohibitively expensive for anything
much larger than a prototype system.

The second assumption that we run up against is the one
that all syntax trees are permanent. Sometimes we need
a user-editable syntax tree, but we do not need to save it.
This is the case, for example, with our query and query
result trees. Query trees are constructed by the user to
specify which preconditions, postconditions, and
obligations he wants to search for in the database. They
have the same structure as the subtrees for specifications
of functions in the program, and the user edits them
similarly, though in their own window. After the query
is processed, the query tree is retained, since often a user
may want to issue a slight modification of the query
based on the initial result. There is never any reason to
save these trees to disk, although the current
implementation does. It would not be hard to set up a
daemon, called on exit from the editor, that deleted the
temporary trees so that they would not be saved.
However, daemon code is an awkward way to specify
something that should be a simple attribute of a tree.

The other, more complex, problem area deals with
reference semantics. References were originally added to
Gandalf as a means of creating cross-tree links, mainly to

allow symbol tables (implemented as attribute trees) and
the main program tree to cross-link with one another for
the benefit of semantic action (e.g., typechecking)
routines. The semantics of Gandalf references,
unfortunately, still reflect that origin, and proved to be
inadequate for some of the uses we had planned for them.
For example, the original plan was to keep only one copy
of the syntax tree for each pre- or postcondition specified
for a function, and make heavy use of references back to
these definitions in the consistency checking code,
keeping lists of references as intermediate results
describing the specification-level interface for each
statement and block in the program. But Gandalf
references were, at that time, not displayable (this is no
longer the case); there was no unparsing specification
that meant "go through this reference and show me what
it points to". Since, as we have already mentioned, we
needed to display these intermediate interface results to
the user, we had no choice but to copy the definition into
each of these intermediate lists. This copying overhead
did even more to slow consistency checking down than
the symbol table problem we mentioned previously.

Copying of subtrees containing references within
themselves (as opposed to having references outside
themselves) led to other problems. Each predicate and
function definition has a local symbol table for
arguments, etc., so when copying definitions into
intermediate lists, it was necessary to copy the symbol
table, as well. Gandalf took care of this to a large
degree; we merely had to specify that the insertion
(copying) semantics were the same as the creation
semantics for the affected statement types. This was,
again, inefficient; we would have preferred to have been
able to copy a subtree as a template, with all attributes
and references in the copy being set up analogously to
those in the template. The Gandalf model, however,
does not include such an operation; instead, all references
must be constructed individually by action routines. We
could have written a user-level ARL routine to perform
the copying operation, but only at the expense of no
longer being able to use the "clip" and "insert" (cut and
paste) commands to make copies of subtrees. The
template copying routine would have been in direct
conflict with the semantic action routines, since creation
semantics are called whenever a syntax tree node is
created by ARL code.

Our final problem with reference semantics also seems to
be tied to the implicit assumption made by Gandalf, not
stated in any of its documentation, that references are
used only for symbol table and typechecking semantics
implementation. When the "tail" of a reference (the node



being referred to) is deleted from its tree, Gandalf
"suspends" the reference, effectively removing it from
the tree unless the deletion is later undone. This is
exactly the right action for a symbol table
implementation, but another of our attempted uses of
references, as described below, wound up tripping over
these semantics.

During the processing of a query by Inquire, the user’s
query is transformed into a conjunction of primitive
terms, queries are done on each of these primitive terms,
and the results of these primitive term queries are then
combined in a later step. This is obviously not the best
way to process a query on a large database, but is quite
adequate for a small prototype system and was relatively
simple to implement. These primitive terms are not
visible to or editable by the user; they are kept in an
internal part of the tree, and deleted once their processing
is finished. Originally, each result returned from a query
was tagged with a reference to the primitive term that the
result satisfied. This caused bugs when results were
found for various terms during query processing, and the
terms were deleted before the final combination step; the
references to the terms were suspended, and the
combination code could not tell which terms had
produced which results. We had been thinking more in
terms of a reference-counted (or garbage-collected)
programming language, where having a reference to an
object protects it from actually being deleted, even if the
original pointer to the object has been lost. This was a
case of a conflict between our intuition of reference
semantics and Gandalf’s actual semantics, which
assumed that references were used only to facilitate
symbol table and typechecking semantics.

5.3 Supporting Tool problems

There are two specific problems and one general
problem. First, there was no debugger for ARL. The
ARL code is translated into C and the debugging must be
done with one of the standard debuggers with the
programmer mentally decompiling the C code back into
ARL during debugging. This is not a major problem, but
one that is annoying nonetheless.

Second, there is only a very limited notion of version in
Smile: the base version and the experimental version.
This is too limiting for the development of any
reasonable sized project, especially if it is of an
experimental nature. There have been a number of times
when we would have liked to back out a base version to a
previous base version. Since only two versions are kept,

this is not possible in Smile.

Finally, the more general problem is that, because of the
tightly integrated and endemic structure of Smile, it is
not possible to integrate available tools into the support
environment. Thus, we can not make use of existing
tools that are not part of Smile, nor add new tools to the
environment.

6. Conclusions

On the whole, our experience using Gandalf as a
prototyping mechanism has been positive. Using the
Gandalf System enabled us to concentrate on the
important issues of syntax and semantics without having
to build the enclosing editing and presentation layer, and
the Gandalf philosophy of incremental construction
served us well in several ways. Not surprisingly, most of
these positive experiences were expected. These
expected benefits were the reasons for choosing to use
the Gandalf System as the prototyping vehicle. We also
expected some of the negative experiences. For
example, we knew that our application would stretch the
limits of the original intent of the system. Even so, most
of these negative experiences were unexpected, and
result from the less obvious, underlying implications of
that original intent. Because these negative experiences
were less obvious, we required more space to explain
them.

The most hindering problems we had involved
presentation. We were effectively limited in the facilities
we could provide by an outmoded implementation of the
user interface. There was no easy way to alter the
presentation facilities because they were enmeshed in the
Gandalf kernel. We made extensive use of multiple
unparsing views, but were hindered by the inability to
have multiple, simultaneous, interactive views. By
grafting a SunWindows extension onto Gandalf, we were
able to provide multiple simultaneous views, but only
one of these could be interactive.

Although we have discussed object management
problems at length, these were less serious than the
presentation problems, since they were for the most part
surmountable (usually at the expense of efficiency).

It bears mentioning that without the rapid prototyping
capability of Gandalf, we would have taken much longer
to reach a point where we could have had similar



experiences.

Acknowledgements

The Gandalf Group at Carnegie-Mellon University
provided both us with timely support and solutions to
many of our problems. Tom Wetmore gave us a careful
reading and insightful suggestions.

References

[1] A.N. Habermann and D. Notkin. ‘‘Gandalf:
Software Development Environments’’. IEEE
Transactions on Software Engineering , SE-12:12
(December 1986). pp 1117-1127.

[2] Dewayne E. Perry. ‘‘The Inscape Environment’’.
Proceedings of the 11th International Conference
on Software Engineering , Pittsburgh PA, May
1989. pp 2-12.

[3] M. V. Zelkowitz. ‘‘Evolution Towards
Specifications Environment: Experiences with
Syntax Editors’’. Information & Software
Technology, 32:3 (April 1990). pp 191-198.

[4] Gail E. Kaiser, Dewayne E. Perry and William
M. Schell. ‘‘Infuse: Fusing Integration Test
Management with Change Management’’.
Proceedings of COMPSAC ’89 — The 13th
Annual International Computer Software and
Applications Conference , Orlando, FL,
September 1989. pp 552-558.

[5] Dewayne E. Perry and Steven S. Popovich.
‘‘Inquire: Predicate-Based Use and Reuse’’.
Inscape Technical Report, AT&T Bell
Laboratories, September 1990.

[6] Dewayne E. Perry. ‘‘The Logic of Propagation in
The Inscape Environment’’. Proceedings of
SIGSOFT ’89: Testing, Analysis and Verification
Symposium, Key West, FL, December 1989.
SIGSOFT Software Engineering Notes 14:8
(December 1989). pp 114-121.

[7] Barbara J. Staudt, Charles W. Krueger and David
Garlan. ‘‘A Structural Approach to the
Maintenance of Structure-Oriented
Environments’’. Proceedings of the ACM
SIGSOFT/SIGPLAN Symposium on Practical
Software Development Environments, Palo Alto,
CA, December 1986. SIGPLAN Notices, 22:1
(January 1987). pp 160-170.

[8] Gail E. Kaiser and Peter H. Feiler. ‘‘Intelligent
Assistance without Artificial Intelligence’’.
Thirty-Second IEEE Computer Society
International Conference , San Francisco, CA,
February 1987. pp 236-241.


