(3]

David Garlan and Mary Shaw. An introduction to
software architecture. In Advances in Software Engi-
neering and Knowledge Engineering, Volume I. World
Scientific Publishing Company, 1993.

David C. Luckham et al. Partial orderings of event sets

and their application to prototyping concurrent timed
systems, Unpublished draft of March 1992.

Erik Mettala and Marc H. Graham. The domain-
specific software architecture program. Technical Re-
port CMU/SEI-92-SR-9, CMU Software Engineering
Institute, June 1992.

Dewayne E. Perry and Alexander L. Wolf. Foundations
for the study of software architecture. ACM SIGSOFT
Software Engineering Notes, 17(4), 1992.



in the system, while connectors define the interactions
between those components. These interactions can be
as simple as procedure calls or data sharing, or can
be as complex as pipes, event broadcast, client-server
protocols, database accessing protocols, etc.

The third distinction is between architectural in-
stance and architectural style. An architectural in-
stance refers to the architecture of a specific system.
Box and line diagrams that accompany system docu-
mentation describe architectural instances since they
apply to individual systems. An architectural style,
however, defines constraints on the form and structure
of a family of architectural instances. For example, a
“pipe and filter” architectural style might define the
family of system architectures that are constructed as
a graph of incremental stream transformers. Archi-
tectural styles typically prescribe such things as a vo-
cabulary of components and connectors (e.g., filters
and pipes), topological constraints (e.g., the graph
must be acyclic), semantic constraints (e.g., filters
cannot share state), and specific instances of compo-
nents or connectors (e.g., there must be a database
in the system). Different stylistic categories range
from abstract architectural patterns and idioms (such
as “client-server” organization) to concrete “reference
architectures” (such as the ISO OSI communication
model and the traditional linear decomposition of a
compiler).

2 Significance to software engineering

Architectural design of large systems has always
played a significant role in determining the ultimate
success of a system: choosing an inappropriate archi-
tecture can have a disastrous effect. However, tradi-
tionally architectural design has been largely informal
and ad hoc, with the result that it has been difficult
to communicate, analyze, and compare architectural
designs and principles. We believe that the current in-
terest in software architecture signals the emergence of
a more disciplined basis for architectural design that
has the potential to significantly improve our ability
to construct effective software systems.

Specifically, a principled use of software architec-
ture can have a positive impact on at least four aspects
of software development.

1. Understanding: Software architecture simpli-
fies our ability to comprehend large systems by
presenting them at a level of abstraction in which
the whole system can be understood [3, 6]. More-
over, at its best, architectural description exposes

the high level constraints on system design as well
as the rationale for making specific architectural
choices.

2. Reuse: Architectural description supports reuse
at multiple levels. While most current work on
reuse focuses on component libraries, architec-
tural design supports, in addition, both reuse of
large components (such as subsystems), and also
the complementary need for reusable frameworks
into which components can be integrated. Ex-
isting work on domain-specific software architec-
tures and reference frameworks have already be-
gun to provide evidence for this [5].

3. Evolution: Software architecture can expose the
dimensions along which a system is expected to
evolve. By making explicit what are the “load-
bearing walls” of a system, system maintain-
ers can better understand the ramifications of
changes, and thereby more accurately estimate
costs of modifications [6].

4. Analysis: Architectural description provides
new opportunities for analysis [6], including high-
level forms of system consistency checking [2, 4],
conformance to an architectural style [1], and
domain-specific analyses for architectures that
conform to specific styles.

3 Purpose of the panel

Whatever the long-term impact of software archi-
tecture may turn out to be, an appropriate starting
point is a concrete appraisal of the current state of
the practice in the use of software architecture. It is
the purpose of this panel to take a step in this direc-
tion. By assembling a panel of experts with a broad
base of experience in the area, we hope to provide con-
crete examples of what is now possible when architec-
tural principles are applied to industrial problems in
systematic ways, to consider the potential impact of
software architecture over the next few years, and to
suggest steps that should be taken to bring this about.

References

[1] Gregory Abowd et al. Using style to give meaning to
software architecture. In Proc. of SIGSOFT’93: Foun-
dations of Software Engineering, December 1993.

[2] Robert Allen and David Garlan. Formalizing architec-
tural connection. In Proc. of ICSE’16, May 1994.



Software Architecture: Practice, Potential, and Pitfalls
Panel Introduction

David Garlan

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213 USA

1 What is software architecture?

A critical aspect of the design for any large software
system 1s its gross structure — that is, its high-level
organization of computational elements and interac-
tions between those elements [3, 6]. Broadly speak-
ing, we refer to this as the software architectural level
of design. Recently software architecture has begun
to emerge as an important field of study for software
engineering practitioners and researchers. This emer-
gence is evidenced by a large body of recent work in
areas such as module interface languages, domain spe-
cific architectures, architectural description languages,
formal underpinnings for architectural design, and ar-
chitectural design environments.

What do we mean by the term “software architec-
ture”? If we look at the current uses of the term “ar-
chitecture”, we find that it is used in different ways,
often making it difficult to understand what aspect
is being addressed. Among the various meanings are
(a) the architecture of a particular artifact, as in “the
blueprints describe this building,” (b) an architectural
style, as in “that church is an example of Gothic ar-
chitecture,” and (c¢) the general study of architecture,
as in “he has an advanced degree in architecture.”

To clarify the meaning of the term “architecture”
with respect to software systems, it is helpful to ob-
serve that the recent emergence of interest in software
architecture has been prompted by two distinct trends.
The first is the recognition that over the years design-
ers have begun to develop a shared repertoire of meth-
ods, techniques, patterns and idioms for structuring
complex software systems. For example, the box and
line diagrams and explanatory prose that typically ac-
company a high-level system description often refer to
such patterns as a “pipeline”, a “blackboard-oriented
design”, or a “client-server system”. Although these
terms rarely have precise definitions, they permit de-
signers to describe complex systems using abstractions

Dewayne Perry

AT&'T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974 USA

that make the overall system intelligible. Moreover,
they provide significant semantic content that inform
others about the kinds of properties that the system
will have: the expected paths of evolution, its overall
computational paradigm, and its relationship to simi-
lar systems.

The second trend is the recent interest in exploit-
ing specific domains to provide reusable frameworks
for product families. This is based on the idea that
common aspects of a collection of related systems can
be extracted so that each new system can be built
by “instantiating” the shared infrastructure. Famil-
iar examples include the standard decomposition of a
compiler (which permits undergraduates to construct
a new compiler in a semester), standardized communi-
cation protocols (which allow vendors to interoperate
by providing services a different layers of abstraction),
fourth generation languages (which exploit the com-
mon patterns of business information processing), and
user interface toolkits and frameworks.

Generalizing from these trends, it is possible to
identify three salient distinctions. The first distinction
is between traditional concerns about design of algo-
rithms and data structures, on the one hand, and ar-
chitectural concerns about the gross modularization of
a large system, on the other. The former has been the
traditional focus of much of computer science, while
the latter is emerging as a significant and different de-
sign level that requires its own notations, theories; and
tools.

The second distinction is between system descrip-
tion based on definition-use structure and architec-
tural description based on graphs of interacting com-
ponents. The former modularizes a system in terms
of source code, usually making explicit dependencies
between use sites of the code and corresponding defini-
tion sites. The latter modularizes a system as a graph,
or configuration, of “components” and “connectors”.
Components define the primary points of computation



