
Anywhere, Anytime Code Inspections:

Using the Web to Remove Inspection Bottlenecks

in Large-Scale Software Development

or

Studies in Interval Reduction

in Large-Scale Software Development

James Perpich, Dewayne E. Perry, Adam Porter, Lawrence G. Votta and Michael W. Wade

ABSTRACT

Disseminating information, maintaining artifact consis-
tency, and scheduling coordinated activities are critical
problems in any large-scale, software development. In-
adequate management of this "process overhead" can
increase rework e�ort, decrease quality, and lengthen
interval. These problems are greatly magni�ed when
a development team is divided across two or more ge-
ographcally separate locations.

For example, in traditional development settings, con-

icts in scheduling meetings account for a signi�cant
portion of inspection interval [] . In a distributed devel-
opment, inspection interval is lengthened still more by
delays resulting from time-zone mismatches, travel to
meetings, and long-distance (sometimes international)
mailings.

In this article we present a tool, Hypercode,
that supports meetingless software inspections with
geographically-distributed reviewers. HyperCode is a
platform independent tool, developed on top of an in-
ternet browser, that integrates seamlessly into the cur-
rent development process. By seamless we mean the
tool produces a paper
ow that is almost identical to
the current inspection process, and is consistent with
ISO certi�cation. Furthermore, HyperCode's user ac-
ceptance has been excellent.

More importantly we evaluated and compared the cost-
e�ectiveness of HyperCode inspections with that of
manual inspections. We found that the cost savings
from reduced paper work and the time savings from
faster distribution of the inspection package have been
substantial. These savings together with the seamless
integration into the existing process appear to be the
major reasons for tools acceptance.

From our viewpoint as experimentalists, however, this
acceptance came too readily and too easily: our control
group insisted on using HyperCode. Therefore, we were
unable to directly assess HyperCode's impact of inspec-
tion quality. Nevertheless, by using historical data we
can show that meetingless inspections (like those sup-
ported ny HyperCode) are at least as e�ective as tradi-

tional inspection with meetings.

Keywords

Code inspections: web-based, meetingless, asyn-
chronous; Natural occurring inspection experiment; Au-
tomated support for inspections; Work, paper and in-
formation
ow.

INTRODUCTION AND BACKGROUND

Code inspections have become a standard part of ef-
fective software development processes. Indeed, code
inspections have been so successsful that virtually all
the major artifacts in the software life-cycle are sub-
jected to some form of group inspection. Because in-
spections are a common and frequently recurring ac-
tivity, they are likely to be a�ected by changes in the
contexts surounding software development. Moreover,
they are also prime candidates for improvements, just
as any frequently executed piece of code in the systems
we build is also a candidate for such scrutiny.

Large software projects have always su�ered to some
extent from geographical separation. People are often
spread over multiple
oors within the same building as
well as distributed across various buildings and loca-
tions. The trend towards the globalization of software
intensive products and their production intensi�es this
problem. This trend puts stress on our processes but
also provides us with opportunities for process improve-
ment. It is in this context that we explore the possi-
bilities for reductions in both cost and interval while
maintaining the requisite level of quality.

- - say what we did: had a goal, built a tool, look at
alternatives, deployed it and think it was a useful pi and
will discuss the process of buildingit, how we arrived a
building it, and how well it has worked.

Our Process Improvement Approach

A typical process improvement approach is to introduce
a process change (often involving a new tool), and then
to evaluate the e�ect of that change. Although it is cer-
tainly necessary to evaluate process changes, too often
the change is proposed without thoroughly understand-
ing the existing process, its important problems, or the
and range of alternative solutions and their tradeo�s.

1

Therefore, our approach to process improvement in-
volves the following steps.

� Understand the current process. The starting
point of any process improvement activity should
be an understanding of the process. Perry, et al. [?]

describe some techniques for conducting appropri-
ate studies.

� Identify key problems. Once the process is un-
derstood, problem areas can be identi�ed and pri-
oritized according to an organzation's goals. For
example, Bradac, et al. [?] combined process mod-
eling and time usage data to identify and priori-
tize process bottlenecks. In another study, Perry
and Stieg [?] collected data on the faults found in
evolving a large, real-time system to identify classes
of development problems and to prioritize them by
frequency of occurrence and �x e�ort.

� Explore and evaluate alternative improve-

ments. Potential improvements will have di�erent
strengths and weakneses and empirical studies are
fundamental to determining them. These studies
explore key issues, risks, and costs of alternative
improvements, and may involve controlled exper-
iments, surveys, process modeling, and prototype
development and evaluation. For instance, Porter
et al. [?] compare and evaluate alternative de-
tection methods for software requirements' inspec-
tions. Jangadeesan et al. [] formally modelled an
industrial software component, and implemented it
in several di�erent ways in order to evaluate a pro-
totype test toolset,

� Build and evaluate preferred improvement.

Based on the previous analyses one or more pre-
ferred improvements will be selected. In many
cases, the preliminary evaluation will not be suf-
�cient to determine the actual range of the im-
provement. In these cases, the improvements must
be built and deployed before they can be properly
evaluated. Again, empirical studies are one of our
basic tools for their evaluation.

In the remainder of this paper we follow these steps to
improve the code inspection process. Afterwards we dis-
cuss critical open questions and present our conclusions.

UNDERSTANDING THE ORIGINAL IN-

SPECTION PROCESSES

The inspection process, abstractly, is divided into three
basic phases: preparation, collection and repair. The
preparation phases includes such things as initiating the
inspection process, disseminating the inspection pack-
age, and the inspectors preparing (that is, inspecting
the artifact) for the collection phase. The collection

phase includes the collection, assessment and resolution
of defects. The agreed upon defects are than �xed in
the repair phase.

We �rst describe the original process in detail and then
present some quantitative data about some critical ap-
sects of this process.

The Process Description

For ease of comparison with the improved process dis-
cussed below, we present the original inspection process
as a sequence of basic steps.

1. Modi�cation Requests (MR's) are issued whenever
additions or enhancements to code are needed.

2. A developer accepts one or more MR's and develops
the necessary code.

3. The author then makes a code unit available for in-
spection. A code unit may implement one or more
MR's.

4. The author selects his or her review team.

5. The author contacts the review team and schedules
the inspection meeting. He or she coordinates the
proposed schedule with project management.

6. The author prepares the inspection package and
distributes paper copies of it to the review team.
The inspection package includes the code unit'
source text, information about meeting time and
location, and all required forms.

7. Prior to the meeting, the reviewers analyze the code
unit looking for defects.

8. The author and reviewers conduct the collection
meeting. One of the reviewers is assigned to be the
moderator, who makes sure the meeting does not
get bogged down on any single point of discussion.

9. During the meeting the author creates the consoli-
dated list of issues. Issues are the potential defects
discovered during the inspection.

10. The author determines which issues must be re-
paired, and does so.

11. The author brings the reworked code to the inspec-
tion moderator who ensures that all issues have
been addressed and signs o� the inspection.

The original process automates much of the step 6: the
code and the changes generated by the MRs are atom-
atically generated for printing and then manually dis-
tributed. The MR and design documents are made
available for the reviewers but are not distributed as
part of the package to save on the amount of paper gen-
erated.

Quantitative Data

- recorded vs analysis (paper vs on-line) data - ISO com-
pliance

- data from live, large scale project - 150 di� things
about inspection

- - - inspector characteristics (ype, expertise, etc), fault,
time, etc

- - - avg fault density - 1 fault in 30

- desk vs meetings data

IDENTIFYING KEY PROBLEMS

Process Improvement Goals

Improvements in product quality tend to be the goals
of process improvement. This is not surprising since
computing elements and their associated software are
becoming ubiquitous in the things we used daily. Prop-
erly working software is thus an extremely important
goal

- most pi is guality improvement

- growing segment where quality is adequate for market,
but costs are too - high and intervals too long { hence
reduce costs/intervals

- one way of doing this is to remove sequencing and
synchronization points

- two large contributors

- - - and process overhead - iso requirements

- - - temporal and geo dislocation,

Process Overhead

- paper trail - iso reqs

- distribution

Temporal and Geographical Dislocation

An increasingly popular trend in large-scale software de-
velopment is the use of development teams that are ge-
ographically separated. Instances of this trend range
from groups that are contained in multiple buildings to
groups that are located in multiple continents. While
the former tend to separated only geographically, the
latter tend to be separated temporally as well. While ge-
ographical separation tends to encourage asynchronous
activities because of cost factors, temporal separation
often precludes synchronous activities because of non-
overlapping work hours.

It is in this context that the dissemination of critical in-
formation and the synchronization of coordinated activ-
ities are critical problems. While these problems are not
insurmountable, their solutions have varying trade-o�s
in terms of time, cost and e�ectiveness. These solutions
range from the simple form of using speaker-phones to

the complex form of multimedia with technologically
intensive computer-supported cooperative work | that
is, from relatively inexpensive and primitive solutions
to expensive and sophisticated (but as yet experimen-
tal) solutions. Note, however, that temporal separation
tends to make these synchronized solutions usable only
for short periods during the workday at best and com-
pletely impracticable at worst.

These two forms of separation can introduce or exac-
cerbate bottlenecks in project schedules. Our previous
studies [?] have shown that the inspection interval is
typically lengthened because of schedule con
icts among
inspectors which delay the (usually) required inspection
collection meeting. This problem is intensi�ed in geo-
graphically and temporally distributed settings.

EXPLORING ALTERNATIVES

-small intro

The Solution Space

- requirements to satisfy: reduce cost/interval

- responses

- - - reduction of paper -

- - - generating iso records and measurement info

- - - remove synchronization - reduce coordination

- what are the design alternatives

- - - obvious things - put it on the web, gen records, etc
- just go with it

- - - need to think hard about - synchronization - anal-
ysis

- - - - - removing synch and compartmentalization - how
to do that

- - - - meetings or not - synch vs asynch

- - - - - get rid of synchronization and make concurent

- - - - - larrys analysis

- - - - shared vs private preparation

- - - - - shared easier given web ability to disseminate
info

- - - - - shared captures some aspects of meetings - knowl-
edge of what others think

- - - - - dont understand e�ect - is there bias, inhibiting,
enhancing??

- - - - - argue it is a second order e�ect at worst, helpful
at best

- - - - overlap of review and repair

- - - - - data analysis suggests that overlap in desk check

already occurs

- - - - - possible as a further improvement, but dont
understand well

- - - - - currently not done (much) - sequentialization

the former is something we did, but still do not uder-
stand well, the latter is something that is possible, but
which we have not explored the consequences of yet. it
is a result of the design choice for the former

Evaluation and Justi�ca tion

- results of data analysis

- - - source of data: controlled experiments, no experi-
ment

- - - desk vs meetings - hyp desk no worse than meetings

- - - live experiment - developers in control - data

- - - - - basic information, details

- - - - - average fault density is virtually identical

- - - - - desk inpsections slightly better - stat sig di�er-
ence, but small

- - - - - dont know selection criteria - but as good as
random since results are identical - how decision was
made - ie tested potential biases and didnt �nd them -
no more e�ective than random

- - - - - whatever caveats we need

- old section follows

Although we have been unable to conduct a controlled
experiment to compare the e�ectiveness of these two in-
spection approaches. We do have other data that sheds
some light on this topic.

If on-line inspections are better than manual inspec-
tions, then it must be possible to eliminate meetings
without decreasing e�ectiveness. Previous work [?, ?, ?]

suggests that this is indeed the case, but until now there
has been no direct evidence from an industrial environ-
ment.

To answer this question we are exploiting a natural ex-
periment currently running at Lucent Technologies. (see
[?] for a similar example). The advantage of this is that
the empirical infrastructure is already in place; that is
the software development organization was already mea-
suring the e�ects of two di�erent inspection processes
(desk-based collection versus meeting-based collection)
and recording critical data for the two processes. Hence,
there was no intrusion on the part of the experimenters
and our role was that of interpretation.

We compare the results of two classes of inspections:
new code (Table 1) and repaired code (Table 2). The

signi�cance is calculated using the Wilcoxon-Mann and
Whitney Rank Order Test [?] , a two-sided test assessing
whether the fault densities observed for each inspection
when taken from a desk or meeting are drawn from the
same distribution. The smaller the number, the more
signi�cant: numbers of .1 to .05 indicate a mild signi�-
cance and numbers below .05 indicate signi�cance.

To determine whether the asynchronous desk inspec-
tions are as e�ective as the meeting collections, we look
at inspection statistics taken from almost 3000 inspec-
tions conducted in this environment. Table 1 and Table
2 show these statistics for new and modi�ed code re-
spectively.

The Tables show that there is now di�erence is the av-
erage fault density of new code inspections found by
desk inspections or meeting-based inspections. There is
a signi�cant di�erence for modi�ed code, but the dif-
ference is e�ectively 0. (.0031 vs. .0037). Since this is
and order of magnitude smaller than the densities for
new code we conclude that meetingless inspections are
no less e�ective than inspection with meetings.

Moreover, there is very little di�erence in the time
needed to repair new code, though the slightly less time
take might be due to overlapping repair with collection.

Summary of Design Choices

Given the geographical and temporal separation of
many of our projects, it is immediately obvious that
electronic distribution saves both delivery time and dis-
tribution costs, especially when several continents are
involved.

dont expect it to change the way select reviewers, org
meetings etc

What has not been taken advantage of is the possibil-
ity of further concurrency in the inspection process |
namely, that the resolution and repair phase can pro-
ceed concurrently with the inspector preparation and
collection phase (probably because work patterns are
hard to change). While there are undoubtedly cases
where defects interact and the expense of coordinated
changes is less than separate changes, in most cases the
changes are independent and hence concurrent repair
would be cost e�ective1.

While it is clear that the new approach is less expensive,
we do not know if it is also less e�ective.

We present and justify a solution using an intranet web
that is both timely in its dissemination of information
and e�ective in its coordination of distributed inspec-
tors. First, exploiting a naturally occurring experiment
(reported here), we conclude that the asynchronous col-

1In software developments where the fault density is higher

before inspections, this may not be a good assumption.

Desk Meeting Both Signi�cance

Number of Inspections 202 441 643 NA
Average Faults/Inspection 10.1 8.8 9.2 .20

(Faults)
Average Code Size/Inspection 427 327 358 .02

(NCSL)
Average Fault Density/Inspection .030 .029 .030 .92

(Faults/NCSL)
Average Repair 7.1 8.0 7.7 .10

(Days)

Table 1: Comparison of Desk and Meeting Inspection Detection E�ectiveness for New Code.

Desk Meeting Both Signi�cance

Number of Inspections 2152 197 2152
Average Faults/Inspection .163 .432 .185 .002

(Faults)
Average Code Size/Inspection 26.0 59.4 28.8 |

(NCSL)
Average Fault Density/Inspection .0031 .0037 .0031 .03

(Faults/NCSL)
Average Repair 1.2 3.3 1.3 NA

(Days)

Table 2: Comparison of Desk and Meeting Inspection Detection E�ectiveness for Repaired Code.

lection of inspection results is at least as e�ective as
the synchronous collection of those results. Second, ex-
ploiting the information dissemination qualities and the
on-demand nature of information retrieval of the web,
and the platform independence of browsers, we built
an inexpensive tool that integrates seamlessly into the
current development process. By seamless we mean an
identical paper
ow that results in an almost identical
inspection process that is consistent with ISO certi�ca-
tion.

BUILDING AND EVALUATING IMPROVE-

MENTS

short forecast/intro

THE hyperCode SYSTEM

�x next paragraph

We discuss two basic views of hyperCode: the process
view and the implementation view. In the �rst, we dis-
cuss the observable characteristics of the tool and how
they a�ect the authors, moderators and inspectors. In
the second, we discuss various details of how we make
things happen, either directly or indirectly.

The hyperCode Inspection Process

1. Modi�cation Requests (MR's) are issued whenever
additions or enhancements to code are needed.

2. A developer accepts one or moreMR's and develops

the necessary code.

3. The author then makes a code unit available for
inspection by interacting with the hyperCode tool.

4. The author selects his or her review team, again by
selecting their names from a hyperCode form.

5. hyperCode then contacts the review team and
project management who respond to schedule the
closing date of the inspection. (There is no meeting
in the hyperCode process).

6. hyperCode prepares the inspection package and no-
ti�es the review team of the package's location.

7. Prior to the meeting, the reviewers analyze the
code unit looking for defects. Reviewers analyze
the code concurrently, while hyperCode automati-
cally collecting all annontations.

8. Once the inspection is closed the author receives
the consolidated list of issues from the hyperCode

system.

9. The author determines which issues must be re-
paired, and does so.

10. The author brings the reworked code to the inspec-
tion moderator who ensures that all issues have
been addressed and signs o� the inspection.

Initial Preparation Initial Preparation

Non WEB Process

.

Collection &
Resolution

Repair

Resolution
& Repair

TIME

Inspector
Preparation

Inspector
Preparation

& Collection
Preparation
Inspector

& Collection
Preparation
Inspector

hyperCode Process

Figure 1: Comparison of the Inspection Processes.

The primary di�erences between the manual and
hyperCode processes are as follows.

� Automated support for inspector selection.

� Automatic noti�cation by e-mail that the package
is available.

� All annotations are visible to all reviewers and the
author throughout the process (concurrent prepa-
ration) .

� There is no meeting in the hyperCode process
(asynchronus team interaction).

User Interface

hyperCode is a web-based code inspection system. Dur-
ing a designated inspection interval, inspectors use the
Netscape Navigator web browser at their desktop com-
puters to view and annotate the code under inspection
(see Figure 2 for an example of the user interface). All
annotations are viewable by all participants. This in-
spection process does not require the simultaneous par-
ticipation of the inspectors, nor do inspectors need to
be geographically co-located. All that is required for
participation is access to the intranet via the Netscape
Navigator web browser. At the end of the inspection
interval, the author and moderator resolve inspector an-
notations and the author makes code changes as appro-
priate. All aspects of the code inspection are performed
via web pages. E-mail noti�cation replaces paper meet-
ing notices, status reports, etc.

hyperCode makes use of an already existing tool that
generates code inspection packages (see Figure 3). The

essential part of the code inspection package is a di�-
marked code listing that highlights new and modi�ed
lines of source code. Traditionally, this code inspection
package is printed on paper and distributed to the in-
spectors. A hyperCode web-based inspection package is
generated by running the output of the already exist-
ing inspection package generation tool through a �lter
that generates an HTML version of the package (line
numbers become hyperlinks that provide the ability to
annotate, page numbers in the table of contents become
hyperlinks to the corresponding pages, etc.).

The hyperCode inspection package has the same lay-
out as the paper version - experienced developers are
therefore immediately familiar with hyperCode inspec-
tion packages. The ability to create and view inspection
packages, create and manage annotations, send e-mail

noti�cations, etc. are provided by a set of CGI scripts
maintained at the webserver. No special purpose soft-
ware is needed by users of hyperCode - the only software
required of users is the Netscape Navigator web browser
(since hyperCode makes use of frames, Netscape Navi-
gator version 2.0 or later is required).

An author creates a hyperCode inspection package by
bringing up the package creation web form and entering
information about the package, including the usernames
of those who are to be inspectors. The author also des-
ignates one of the inspectors to be the moderator of the
inspection. Standard WWW username/password au-
thentication is used to identify users and control access.
The author then submits the form, which causes the
webserver to invoke the standard inspection generation
tool and feed the results to the HTML �lter, the output
of which is the hyperCode inspection package which is

Figure 2: Example of the User's View of hyperCode.

Traditional Inspection
Process

Web Browser Web Browser

WebServer

inspector

HTML
filter

HTML inspection
package

annotations

have a meeting

Distribute paper,

printing tool

inspection package

sinspect

MR list

Web-baesd Inspection

Figure 3: Generating the Inspection Packages.

deposited in a node managed by the webserver.

A hyperCode inspection package goes through a lifetime
consisting of 4 states: pending, in progress, resolution,
and done. Packages can be viewed in any state, but
annotations can only be made by the inspectors when
the package is in the in progress state. A package is ini-
tially created by the author in the pending state. The
author then moves the package to the in progress state,
which causes e-mail noti�cation to be sent to the inspec-
tors and other interested par- ties (project management,
quality team, etc.). The designated inspectors may now
inspect the code and make annotations.

At the end of the designated inspection interval, the
author moves the package to the resolution state. This
state transition again generates e-mail noti�cation to

the inspectors and other interested parties. The author
then determines the disposition of each annotation and
records (via hyperCode web page) whether any code
changes will be required. After the disposition of all an-
notations has been determined, the author then informs
the moderator via e-mail that the package is ready for
moderator sign-o�. The moderator then veri�es the dis-
position of the annotations.

The moderator then moves the package to the done
state. This state transition generates a �nal e-mail no-
ti�cation to inspectors and other interested parties.

Implementation

Source code line numbers are hyperlinked to a form that
allows inspectors to enter annotations. That is, when
an inspector clicks on a source code line number, a web
form containing a text input area is presented. The
inspector enters the annotation and submits the form,

which causes the webserver to make a record of the
annotation. The record contains the username of the
inspector, the line number and source code �le name,
along with the text of the annotation.

For each inspection package, hyperCode provides a page
that lists all annotations that have been made to date
by the package inspectors. The annotation list contains
hyperlinks to the annotation text and to the relevant
source code page. The annotation list is ordered by
source �le and line number. The annotation list page
is generated via a CGI script, so the page is up to date
each time it is reloaded by a web browser.

If a source code line has been annotated by an inspec-
tor, a graphical element appears in the left hand margin
of the source code display page as a visual cue to in-
spectors or other viewers of the package. The graphical
element is hyperlinked to the text of the corresponding
annotations.

In addition to source �le-speci�c annotations, inspectors
may also make general annotations that do not refer
to any particular line of source code in the package.
These type of annotations may be used to record general
concerns or issues that are global to the source code
under inspection. At the top of each source code display
page is a hyperlink to a web form that allows these types
of annotations to be made. General annotations also
appear on the annotation list page.

Evaluation of Initial Experience

The acceptance of the inspection tool has been excellent.
We attribute this to four basic facts: First, the cost sav-
ings just from the reduction in paper work and the time
savings from the reduction in distribution interval of the

inspection package (sometimes involving international
mailings) have been substantial. Second, the new intra-
net tool-based process integrates seamlessly into the ex-
isting environment and work
ow. This point is both
a subtle and a critical one. The disruption of existing
work
ow almost always causes both resistance and un-
expected side-e�ects. Third, the new process opens up
new possibilities for concurrency and inherent speedups
of the elapse time interval. Fourth, the ubiquity of the
web with its distribution and random accessibility as
well as its browser platform independence makes it a
natural platform for such an approach as ours.

SUMMARY

Conclusions

- cost e�ective

- shorter interval

- - - remove compartmentalization, sequencing

- - - at least as e�ective

While there has been much work on inspections struc-
tures, inspection techniques and automated inspection
support, we believe we are the �rst to report on the use
of an intranet-based tool to support asynchronous (that
is, meetingless) code inspections. The primary e�ort in
prior automation is in the application of CSCW sup-
port for inspection collection meetings | that is, in the
support for synchronous meetings (see for example [?, ?]

). But as we have shown above, asynchronous code in-
spections are more cost e�ective and at least as quality
e�ective as synchronous inspections. Moreover, the cost
of asynchronous automated support is signi�cantly less
than that of synchronous.

The empirical data we report here is the �rst such data
showing speci�cally that asynchronous code defect col-
lection is as e�ective as the synchronous code defect
collection.

Open Questions

- e�ects of shared vs private {

- - - argue from siy thesis, no worse

- - - sharing incorporates (good?) aspects of current
meetings

- - - prelimary data looks encouraging

- overlap of review and repair

- - - consistency

- - - premature repair, repair on repair (potential for
code decay)

- - - possibly more e�ort, certainly shorter interval

- - - serious study needed here for e�ects

- analysis to show that overlap looks like a good idea

