Position paper to be presented at the International Workshop on Principles of Software Evolution, Kyoto, Japan, April 1998

Challenges in Evolving a Large Scale Software Product

Harvey P. Siy
Software Production Research Department
Bell Laboratories
Naperville, IL 60566 USA
+1 630 224 6830
hpsiy@Qresearch.bell-labs.com

ABSTRACT

Evolving a large system presents a number of significant
challenges. Not only is the developer concerned about
how to fit in a new feature to a maze of existing fea-
tures, he has to make sure his changes do not conflict
with those being made in parallel by his colleagues. This
is a minor problem in small projects with small organi-
zations. However, as the project size scales up, so does
the organization, and management of parallel tracks of
development becomes a major concern. Moreover, in-
creasing usage by customers with diverse needs pulls
the evolving software into different directions, necessi-
tating the evolution of multiple customized versions and
compounding the already complex problem of evolving
legacy systems.

We will examine one such legacy system, the Lucent
Technologies 5SESS® switching system. First introduced
in 1982, 5ESS was envisioned to support telecommuni-
cation needs well into the next century. Already one of
the largest and most complex pieces of real time code in
the world, the software to run the switch still continues
to evolve with new features and in an increasing number
of customized versions. In order to keep up with future
evolution and maintain the growing base of customers,
a combined procedural and technological solution was
put in place. We will discuss this particular solution
and its limitations.

1 INTRODUCTION

Any successful software product evolves in order to
stay successful. Evolution involves fitting in new fea-
tures into an existing maze of features. At any given
time, multiple features are being implemented by mul-
tiple teams of developers. Not only is a developer con-
cerned about unforeseen feature interactions between
his team’s feature and the existing base, he is concerned
about undesirable interactions between his feature and
those that are being made in parallel by his colleagues.

In many cases, a successful software product must evolve
in more than one direction. To maintain the increas-
ingly diverse (and potentially conflicting) needs of the
growing customer base, multiple versions of the same

Dewayne E. Perry
Software Production Research Department
Bell Laboratories
Murray Hill, MH 07974 USA
+1 908 582 2529
dep@research.bell-labs.com

product, each one tuned to specific customers, are
spawned and evolved. This customization further com-
plicates the job of a developer working on a new feature.
Not only does he have to contend with his colleagues
working on other features in parallel, he has to make
sure his team’s feature fits into one or more existing
bases.

The effects of the fusion of parallel development and
multiple versions worsens with scale. As a project
grows, the bases become confusing mazes of features,
constraining the ability to add new features. As the
development organization grows, the level of awareness
among developers go down, perhaps to the point where
no single person has a clear overall picture of what is
going on. Moreover, the amount of parallel evolution
increases over time.

We will describe how one system is coping with this phe-
nomenon. The 5ESS switching system is Lucent Tech-
nologies’ flagship product, used in connecting local and
long distance calls involving voice, data, and video com-
munications. The software to run the switch is more
than 10 million lines of code, divided into 50 subsys-
tems, and involves more than 3,000 developers. The
degree of parallel work going on is at an unprecedented
level [4]. Moreover, the globalization of the telecommu-
nications market has led to a diverse international cus-
tomer set who have different requirements due to differ-
ent telecommunication policies, maturity of telecommu-
nications infrastructure, unwillingness to replace expen-
sive legacy hardware, etc. With this increasing global-
ization, evolving multiple, customer-specific versions is
increasingly becoming a concern.

To continuously evolve the system, a combined proce-
dural and technological solution was put in place. We
will discuss this particular solution and summarize with
a discussion of issues that need to be addressed.

2 5ESS SOFTWARE DEVELOPMENT

The 5ESS system is maintained as a series of releases,
with each release offering new features on top of the ex-
isting features in previous releases. The timeline on Fig-
ure 1 shows the number of deltas (defined below) applied



RELEASE

DELTAS PER MONTH

115 — —
114 — ———o
s __mftitee
12 - SN, N
11 — —_——
110 - ool
19 —
18— —_—
17 o Dj il —reo
16 —
15 — _—
13 4 W
12 o
1
D11 — —=n=rfl
D10 — - OMHe o
D9 —| — e b b e e
D8 — O NN 2
b7 - il o neme
D6 - ot
D5 —| [Ei15=. S
D4 — — At e
o3 i [T 1
D2
D1 o ——emeine. o

T T T T T T T T T T T T
85 86 87 88 89 90 91 92 93 94 95 96

RELEASE TIMELINE

Figure 1: Timeline of parallel releases. Each his-
togram represents work being done for one release of the
software. The top and bottom halves show releases for
the international and domestic products, respectively.

every month to each release of one 5ESS subsystem. It
gives a feel for the amount of parallel activity going
on. The top half shows the international releases (la-
beled I1-115) and the bottom shows the domestic ones
(labeled D1-D12). It shows that for each product line,
there may be 3—4 releases undergoing both development
and maintenance (i.e., evolution) at any given time.

We will describe the software development process in
5ESS, focusing on the latter phases where most of the
impact of parallel development and customizations are

felt.
2.1 Making Changes

Change Management. Lucent Technologies uses a
two-layered system for managing the evolution of 5ESS:
a change management layer, ECMS [7], to initiate and
track changes to the product, and a configuration man-
agement layer, SCCS [6], to manage the versions of files
needed to construct the appropriate configurations of
the product.

All changes are handled by ECMS and are initiated us-
ing an Initial Modification Request (IMR) whether the
change is for fixing a fault, perfecting or improving some
aspect of the system, or adding new features to the sys-
tem. Thus an IMR represents a problem to be solved
and may solve all or part of a feature. Features are the
fundamental unit of extension to the system and each
feature has at least one IMR associated with it as its
problem statement.

Each functionally distinct set of change requests is
recorded as a Modification Request (MR) by the ECMS.
An MR represents all or part of a solution to a prob-
lem. A variety of information is associated with each
MR. This includes the date it was opened, its status, a
short text abstract of the work to be done, and the date
it was closed.

When a change is made to a file in the context of an MR,
SCCS keeps track of the actual lines added, edited, or
deleted. This set of changes is known as a delta. For
each delta, the ECMS records its date, the developer
who made it, and the MR where it belongs.

Viewpathing. Viewpathing searches an ordered list
of locations to find files. Each location in the viewpath
is identified by a full pathname. Each pathname must
be unique but the directories under them must have
the same structure. The last location in the viewpath
contains the official version of all files while the other
locations may have just a subset of the files. In building
a subsystem, the compiler tools searches through the
viewpath in sequence from first to last for the files it
needs. This idea allows developers to extract only the
files they need to modify to a private path (which is then
inserted to the front of the viewpath) while still being
able to build the whole subsystem. Thus developers can
make modifications, build and test their private copies.

MR Coding Process. The process of implementing
an MR usually goes as follows:

Make a private copy of necessary files.

Try out the changes within the private copy.
Commit the changes as deltas in the SCCS.

Put the private copy through code inspection and
unit testing.

5. Submit the MR for load integration and feature and
regression test.

W

There are several observations. At any given time, there
may be multiple private copies of a file being edited by
different developers. In fact, some files may be involved
in more than 10 active MRs at one time [4], each with its
own private copy of the file. Unless the developers are
aware of each others’ work, the changes being made by
other developers are not visible until these developers
submit their MRs for integration. It is hoped that any
conflicts are caught during load integration and feature
and regression testing.

A previous fault study [5] also showed that due to the
amount of concurrent work going on, nearly 30% of all
MRs for a given release are discarded, either because
they were duplicate problems already reported by some-
one else, or they were unnecessary fixes requested by de-
velopers who misunderstood the system requirements.



2.2 Merging and Integration

Load Building. When the developers are done with
their unit tests, their MRs are submitted to a central
build team which performs the load building. A pub-
lic build is attempted 3 weeks after the previous public
build. A freeze date is announced to mark the start of
the public build. Prior to the freeze date, the central
build team will perform prebuilds of MRs that have al-
ready been submitted to it. In this way, some build
errors can be caught before the actual public build. De-
pending on the number and severity of build errors, load
building takes from 1 to 7 weeks.

Load Bringup. After the build has been successful,
the load is distributed to the test labs and the test labs
are set up with the proper environment. This turns
out to be nontrivial, first of all, because any load this
size simply takes a long time to duplicate and move
around. In addition, the test lab environments evolve
along with the particular releases. So depending on the
release to be tested, the set up requires different sets of
tools, operating system versions and manual hardware
adjustments. The fault study previously mentioned [5]
noted that almost 20% of faults in one release was due to
problems with the test environment itself and /or setting
it up.

System Testing. After the labs have been set up,
regression tests are run on the different platforms. After
regression testing has succeeded, the new features in
the load are ready for the feature and system testers.
Lab time is scheduled for the various tests that need
to be performed. In many instances during testing, the
testing time is insignificant compared to the set up time
because the test fails almost as soon as it is run.

2.3 Managing Customization

Software Updates.
year or so, a new major release of the 5ESS system is
made available. After the release date, each release goes

According to Figure 1, every

into field support mode in which customer-found field
problems are fixed. These fixes are patched onto the
running system as software updates. The software up-
date deployment mechanism can also be used to patch
new features onto the running system. This uncoupled
some features from following the mainstream develop-
ment life cycle of the product release, allowing develop-
ers to deliver some features virtually on demand.

Streams. When there was only one version of a re-
lease, every time a new feature or fix was made, the
software update had to be sent to every customer on the
release, whether they needed it or not. This was poten-
tially expensive for international customers. To reduce
cost, improve turnaround time, and increase customer
satisfaction, a multiple stream strategy was adopted,

12

pr20

pra.0

Figure 2: Release I12 streams genealogy. This ge-
nealogy tree illustrates the set of active streams for Re-
lease I12. The rectagular nodes are the PR loads. The
oval nodes are the streams. The solid links connect base
loads to the SU streams derived from them. The dotted
links illustrate how some features in the streams prop-
agate back to the PR loads.

where a new feature or fix is only sent to the minimal
set of customers who need or want the change. In the
multiple-stream strategy, a stream is opened (if one does
not already exist) for each customer requesting a new
fix or feature. The software updates are then patched
to the customers’ streams. A customer may elect to up-
grade to a newer release or stream, in which case he is
taken off his current stream.

Field Fixes. Sometimes a bug is found which impacts
a set of releases. The change is made using special com-
piler directives. There are directives which specify the
earliest applicable release, telling the compiler that the
changes applies from that release onwards. Other direc-
tives tell the compiler when a change only applies up to
a certain release.

2.4 Integration of Streams

Product Releases. Figure 2 shows the streams based
off Release I12. Overall, there are about 100 streams
being actively maintained by the development organiza-
tion. At regular intervals, the load builders will incor-
porate all new features and fixes into a product release
(PR) load. This becomes a new base upon which future
features and fixes are made.



3 DISCUSSION

In order to continue evolving this and other large sys-
tems, several challenges must be met.

3.1 Merging Parallel Changes

The problems in parallel development arise when it is
time to put them together.

Costs of Build Problems. Inevitably, problems will
show up during the build stage due to late or missing
MRs, name clashes, etc. These builds are expensive in
terms of effort and time. It may take an effort-intensive
search to track down the problem and track down the
developer who introduced the problem. This delays the
completion of the build process and disrupts tight lab
schedules [8].

Coordination and Builds. The product build step is
central to coordinating the separate threads of activity.
Case studies have shown that the ability to perform fre-
quent product integrations is proving to be a key factor
in large successful projects [2]. It is easy to show that if
the interval between builds is made longer, the probabil-
ity of interactions increases geometrically as the degree
of parallel development increases, quickly increasing the
complexity of the conflict resolution process. One way
to simplify this process is to keep the parallel activities
low by shortening this interval. However, as the interval
is shortened, the cost of performing the builds — a lot of
which is attributed to the cost of setting up the labs —
might grow prohibitively expensive. Thus a challenge is
to find the optimal interval between builds to minimize
cost and probability of interactions.

Detecting Interactions. Another option is to main-
tain a long interval between builds while being able to
better handle the coordination process. So a primary
area for tool support is in identifying potential inter-
actions between changes in the different threads of ac-
tivities and making sure that they are not in conflict
with each other. Currently, the state of the practice
for detecting interactions is to perform extensive sys-
tem testing. The introduction of program slicing tools
to detect interfering changes [3] may reduce the cost
by catching interactions due to syntactic dependencies
before testing. To detect interactions due to logical de-
pendencies, a dynamic analysis approach for detecting
changes in execution profiles such as dynamic path pro-
filing [1] may be useful.

3.2 Change Propagation

Evolving multiple versions introduces several additional
problems related to having to propagate code changes
to multiple code bases.

Change Compatibility. Developers working on field
fixes need to make sure their fixes work in all versions.
This is a variation of the interaction detection problem
where there are multiple code bases. There are bizarre
cases where a fix may work for some versions but not
for others due to some obscure logical dependency, thus
requiring conditional fixes.

Distributing Fixes. With multiple versions, a mech-
anism is needed to propagate changes to the appropriate
versions. Field problems found in earlier versions need
to be propagated forward while problems found in later
versions need to be propagated back to earlier ones.

Feature Migration. Another form of propagation
happens when features in one stream are migrated to
another stream or to the base code. This leads to ar-
bitrary feature combinations, taxing the ability of the
testing organization to ensure that the resulting systems
remain reliable.

4 SUMMARY

In this paper, we have attempted to show that the evo-
lution of a large scale real-time system is extremely
complex in and of itself because of the amount of par-
allelism that goes on in evolving the system. This is
compounded by market pressures for customer-specific
features which may be folded into the base system as
well as passed on to other customers. In addition, parts
of the supporting environment have to evolve with the
product itself.

This goes to show that the problem of software evolution
is far richer than is generally recognized.

ACKNOWLEDGEMENTS

We thank Mary Denton and Brian Enke for answering
all our numerous questions about software updates and
the streams process.

REFERENCES

[1] Thomas Ball and James R. Larus. Efficient path profiling. In
Proceedings of MICRO 96, pages 46—57, December 1996.

[2] Michael A. Cusumano and Richard W. Selby. Microsoft Se-
crets. The Free Press, 1995.

[3] Susan Horwitz, Jan Prins, and Thomas Reps. Integrating
noninterfering versions of programs. ACM Trans. on Software
Engineering and Methodology, 11(3):345-387, July 1989.

[4] Dewayne Perry, Harvey Siy, and Lawrence Votta. Parallel
changes in large scale software development: An observational
case study. In Proceedings of the 1998 International Confer-
ence on Software Engineering, Kyoto, Japan, April 1998.

[5] Dewayne E. Perry and Carol S. Stieg. Software faults in evolv-
ing a large, real-time system: a case study. In 4th FEuropean
Software Engineering Conference — ESEC93, pages 4867,
Sept. 1993. Invited keynote paper.

[6] Marc J. Rochkind. The Source Code Control System. IEEE
Trans. on Software Engineering, SE-1(4):364-370, December
1975.



[7]

(8]

P. A. Tuscany. Software development environment for large
switching projects. In Proceedings of Software Engineering for
Telecommunications Switching Systems Conference, 1987.

Alexander L. Wolf and David S. Rosenblum. A study in soft-
ware process data capture and analysis. In Proceedings of
the Second International Conference on the Software Process,
pages 115-124, Feb. 1993.



