
Software Interconnection Models

Dewayne E. Perry
AT&T Bell Laboratories
Murray Hill, NJ 07974

908.582.2529

published in
The 9th International Conference on Software Engineering

May 1987, Monterey CA

Abstract

We present a formulation of interconnection models and present the unit and syntactic
models — the primary models used for managing the evolution of large software
systems. We discuss various tools that use these models and evaluate how well these
models support the management of system evolution. We then introduce the semantic
interconnection model. The semantic interconnection model incorporates the advantages
of the unit and syntactic interconnection models and provides extremely useful
extensions to them. By refining the grain of interconnections to the level of semantics
(that is, to the predicates that define aspects of behavior) we provide tools that are better
suited to manage the details of evolution in software systems and that provide a better
understanding of the implications of changes. We do this by using the semantic
interconnection model to formalize the semantics of program construction, the semantics
of changes, and the semantics of version equivalence and compatibility. Thus, with this
formalization, we provide tools that are knowledgeable about the process of system
construction and evolution and that work in symbiosis with the system builders to
construct and evolve large software systems.

1. Introduction

Progress in the management of software evolution has been very slow. While we now have a growing

emphasis on programming environments and integrated sets of tools for the software production process,

the underlying models used in managing the evolution of software have not changed significantly in the

past 20 years. Where formerly we managed the process of software evolution informally, we now have

tools to help us with these problems. However, the models we use have changed very little.

One of the primary models that we use to manage the evolution of software systems is an Interconnection

Model (IM). An interconnection model is a tuple that consists of two sets: a set of objects that are the

components of interconnections and a set of relations that define the kinds of interconnections that exists

among the objects in the model.

IM = ({ Objects } , { Relations })

The interconnection models are typically used to construct graph structures in which the nodes are objects

in the model and the arcs are the relations. Various sorts of computations are then performed on the graph.

Presently, we use two interconnection models in managing the evolution of software: the unit

interconnection model and the syntactic interconnection model. We present each of these models and

describe various uses that are made of these models to aid the evolution process. It should be noted that the

syntactic interconnection model may either implicitly or explicitly include the unit interconnection model.

We then introduce a new model, the semantic interconnection model, and indicate how it provides a finer

grain of interconnections than the first two models. We show that, because of the nature of these semantic

interconnections and their finer granularity, the semantic interconnection model provides a better model for

managing the evolution of software than either the unit or syntactic interconnection models. Please note

that, as the syntactic model may include the unit model, the semantic model may include both the syntactic

and unit models.

2. Unit Interconnection Model

The unit interconnection model defines relationships between various units — typically, either files or

modules — that comprise a software system. The basic relationship is one of dependency — for example,

unit a depends upon units b, c and d. Thus, in generic terms, a unit interconnection model has as its set of

objects a single type of object, a unit, and has as its set of relations a single relation depends on.

Unit IM = ({ units } , { "depends on" })

We shall see that this model varies slightly with each individual use.

This model is useful because it supports and encourages modular construction of software. It captures both

the notion of encapsulation (that is, breaking a program into pieces that isolate different features of the

system) and the notion of a single copy of each unit in order to localize the problems of maintenance and

evolution.

Among the uses of this model are the following: determining compilation contexts, determining

recompilation strategies, change notification, and system modeling. We discuss each of these uses and

describe the particular instantiation of the unit interconnection model.

Two examples of using this model for determining the context of a compilation are the C preprocessor [23]

and Ada [1]. In C, the context of a compilation is defined by a set of #include directives. The C

preprocessor then establishes the compilation context by physically including the mentioned files in order

to compile correctly the unit (in this case, a file). The model used by the C preprocessor is

IM = ({ files } , { "includes" }).

In Ada, the context is defined by the with clause. The Ada language system then establishes the context for

a compilation unit (which in this case may be a package, a subprogram, etc.) by incorporating the symbol

table information derived from the specification of the named compilation unit into the symbol table for the

unit being compiled. The model used for the Ada language system is

IM = ({ compilation-units } , { "with" })

Recompilation strategies make use of a slightly richer form of the unit interconnection model. Ada, for

example, uses this information in order to determine compilation dependencies and adds the relation of

changed more recently than to the model in order to determine its recompilation strategy. Thus, its model

for this purpose is

IM = ({ compilation-units }, { "with", "changed more recently than" }).

Make [4] incorporates the explicit definition of dependencies, the relationship changed since derived object

generation, and the knowledge of how to generate particular derived objects from those they depend on in

order to determine recompilation and regeneration strategies. For example, .o files are derived by applying

cc to .c files and .c files may be derived from .y files by applying yacc. Thus, Make’s unit interconnection

model is

IM = ({ .o files, .c files, .y files, ... } , { "depends on", "changed since generation" }).

The #include dependencies used for defining the context of a compilation can also be used to help with the

problems of making changes consistently throughout a system. For example, an extension to the Software

Change Control System (SCCS) [23] uses these dependencies to notify the programmers who are

responsible for units that depend on units which have been changed that their unit may be affected by these

changes. Whereas SCCS’s facilities are static and provided only on demand, DOMAIN Software

Engineering Environment (DSEE) [14] provides change notification facilities that are dynamic — monitors

are placed on files that are triggered when changes are made to the monitored file. Notices are then sent to

the agents responsible for the monitors.

The composition of systems is described by a system model — a description of the components that

comprise the system. Cedar’s System Modeler [13], DSEE, some versions of SCCS, and RCS [27] provide

system modeling on the basis of files. This information is then combined with facilities for recompilation

to provide facilities for system regeneration. The interconnection model for these kinds of system

modeling is

IM = ({ systems, files } , { "is composed with" }).

Some of these systems provide facilities for composing subsystems from files and then systems from

subsystems. In this latter case, we merely add the appropriate objects to the model.

While the model is useful in supporting encapsulation and modularity, determining compilation contexts,

determining useful recompilation strategies, providing change notification, and describing system models, it

is useful only with very large-grained objects. Remember that the basic units in this model are either files

or packages which usually contain multiple smaller objects such as types, constants, data and functions.

Often only a small amount of a context provided in this manner is actually used. More than is really

necessary is often recompiled because of the size of the granularity involved. Since only a small amount of

a context may be actually used, change notifications may also be sent on too broad a basis as well. Finally,

we may want to compose our systems out of smaller pieces than files, modules or packages. Thus, a finer

grain of interconnection than is supplied by the unit interconnection model is needed for effective

management of evolution in software systems.

3. Syntactic Interconnection Model

The syntactic interconnection model has an advantage over the unit interconnection model in that it focuses

on smaller units: it describes the relations among the syntactic elements of programming languages. Thus,

in generic terms, a syntactic interconnection model has in its set of objects procedures, functions, types,

variables, etc. (the exact list depends upon the objects defined in the particular programming language —

for example, some languages support modules, others do not) and has as its set of relations such relations as

calls, is called by, is the parameter of, is an argument of, is used at, is set at, etc. (again, the exact set of

relations that is possible is language dependent).

Syntactic IM = (

{ functions, procedures, types, variables, ... } ,

{ "is used at", "is set at", "calls", "is called by", ... }

)

Again, we shall see that this model varies slightly with each individual use.

This model is useful because it localizes the interconnections to those among objects used in writing the

software: types, variables, procedures, parameters and arguments, etc. Further, it captures the basic objects

of evolution, the objects of the language in which the programming is done. Where the unit interconnection

model only indicates the general location of changes, the syntactic interconnection model indicates the

syntactic objects that are changed — a finer grain of locality.

Among the uses of this model are the following: change management, static analysis, smart recompilation,

and system modeling. We discuss each of these uses and describe the particular instantiation of the

syntactic interconnection model.

The classic manifestation of the syntactic interconnection model is the cross-reference, or set/used, listing

(often supplied as a side-effect of compilation). The cross-reference listing is a simplified instantiation of

the syntactic interconnection model and has been used as the primary tool for managing the change process

for the past 25 years. By consulting a cross-reference listing, programmers can systematically locate the

exact places affected by changes and can propagate the effects of these changes manually. The model used

by the cross-reference listing combines the syntactic objects of the language with the notion of a location

(often the line number in the program listing) to define the relations of definition, use and assignment.

IM = (

{ functions, procedures, types, variables, ..., locations } ,

{ "is defined at", "is set at", "is used at" }

)

This kind of change management information can be automated with the appropriate database built from

the system on the basis of this interconnection model. Simple kinds of automation are supplied by existing

tools such as compilers. For example, because changes are made to syntactic units, compilers can often be

used to detect the effects of certain kinds of changes such as deletions of identifiers and modifications of

spelling. Interlisp’s Masterscope [26], Cscope [25] and Smile [12, 17] provide a more sophisticated sort of

automation, though in differing ways — Masterscope builds a database of relationships and provides

change management by querying the database; Smile provides incremental checking as changes are made.

An interesting knowledge-based approach is described in [2]. All of these tools use a version of the

syntactic interconnection model that is close to the generic model.

Static analysis of programs, such as that found in the semantic checking of compilers and tools like Lint

[16], use this model to build the relationships between objects in a program. While most compilers use the

generic form of the interconnection model in order to provide there semantic analysis, Lint requires a richer

model in order to determine such things as unreachable code, unset variables, etc.

Tichy [28] uses the syntactic model to determine the effects of changes within a module and the necessity

of recompilation. As in the unit model, the relations of change, addition and deletion are added to the

relations of the syntactic model and used to determine whether a particular change necessitates

recompilation. For example, a change within a procedure only requires the recompilation of that procedure;

a change to the parameter list of a procedure might necessitate the recompilation of all of its uses,

depending upon the nature of the change. The model used by Tichy’s smart recompilation is

IM = (

{ functions, procedures, types, variables, ... } ,

{ "is used at", ..., "is changed to", "is deleted from", "is added to" }

).

System modeling, such as that found in Gandalf’s SVCE [8, 11], indicates the objects that are needed to

compose a particular version of a system or system component. Thus, elements of a system can be

composed of separate parts that are of a smaller grain than in the previous model. Two further advantages

result: better composition consistency checking and smarter system generation. First, the system model can

be married with static analysis to determine the consistency of the components in the system model.

Second, because the objects are smaller than the units in the previous model, the process of generating new

systems — that is, marrying system modeling with smart recompilation — can be managed with a finer

degree of control than in the unit model. System modeling, then, requires a slightly richer model than the

generic syntactic interconnection model.

IM = (

{ systems, system-components, functions, procedures, types, variables, ... } ,

{ "is used at", "is set at", "calls", ..., "is composed with" }

)

In all these manifestations of the syntactic interconnection model, we have a finer degree of

interconnections and a richer set of relationships than in the unit interconnection model. We have explicit

interconnections among the basic objects of program construction. However, we have no notion of why

these interconnections exist; there is no indication how the objects were intended to be used, nor why the

objects were in fact used.

4. Semantic Interconnection Model

While we can derive various kinds of facts about a system from its syntactic interconnections, we gain no

information about the semantics of the system, and certainly no information about the intentions of the

numerous programmers in building a large system the way it was built. Granted, there are certain

assertions that we can derive about data from strong typing, but that is a relatively small amount of

information when considered as part of the whole system and as part of what is needed in order to provide

effective management of system evolution.

It is this lack of semantic information about the components that are used in building large software

systems that leads to the introduction of the semantic interconnection model. We need a way to express

how objects that comprise a system are meant to be used — that is, what the designers and builders had in

mind when the objects were created — and to capture how these objects are, in fact, used — what the

builders had in mind when they used these objects to build the system.

We found the technology of formal specifications to be a useful source of information about how objects

are meant to be used. Algebraic specification approaches (such as OBJ [6] and Larch [7]) and input/output

predicate approaches (such as Hoare [10], Alphard [29], Dijkstra [3], and Anna [15]) represent some of the

ways in which a system builder might describe the semantics of system objects. Algebraic axioms are

particularly apt for describing the relationships between operations and for indicating how these operations

are meant to be used. Input/output predicates, while perhaps less elegant for this purpose, are more

suggestive as a means of describing how system objects are actually used. In particular, Hoare’s

input/output predicates [10] viewed as points of interconnections, rather than as elements to be used in

proving properties about a program fragment, are particularly suggestive.

It is the thesis of the Inscape Environment research project [18, 19] that this view of input/output predicates

provides an extremely fruitful basis upon which to build tools for managing the construction and evolution

of large software systems. In the following subsections, we discuss how predicates can be used as points of

interconnection and define the semantic interconnection model. We then describe how this model can be

used to provide tools to manage the evolution of large systems. In particular, we discuss how this model is

used in system construction, in system modification, and in version control.

4.1 Predicates and Interconnections

In the basic input/output predicate approach, the input predicates define the assumptions, or preconditions,

that must be satisfied if a sequence of code is to execute successfully. The output predicates define the

results, or postconditions, that are guaranteed to be true if the input predicates are satisfied. Each of these

predicates, whether they are preconditions or postconditions, represents a fact about the behavior of either

the system or a system component for example, Allocated(*Bufptr) indicates that a buffer has been

allocated as the reference of Bufptr and 0 ≤ L ≤ MaxLength indicates that L has a value between zero and

the maximum possible length. Predicates provide the basic vocabulary with which to describe the behavior

required and produced by a component in a system. If we view a component of a system and its

preconditions and postconditions as analogous to a hardware chip with its input and output pins, we have a

metaphor for semantic interconnections. Postconditions are facts that can be used to satisfy our

assumptions, i.e., our preconditions. At this point we will be somewhat vague about the term satisfies and

refine it in the subsequent discussion.

Thus, we extend the syntactic interconnection model to get the semantic interconnection model by adding

predicates to the set of objects and the relation satisfies to the set of relations.

Semantic IM = (

{ functions, procedures, types, variables, ..., predicates } ,

{ "is used at", "is set at", "calls", "is called by", ..., "satisfies" }

)

4.2 Predicates and Program Construction

Whereas formal specification projects in general emphasize the formal properties of specifications and the

problems of verification (as for example in the OBJ and Larch projects), the Inscape Environment

emphasizes the practical and constructive use of interface specifications. The interface specifications are

used as a means of practical program construction, not verification. In order to do this, we extend Hoare’s

approach in two ways. The first extension is the manner in which the result behavior of an operation is

specified. In addition to postconditions, which describe what is known to be true as a result of an

operation’s execution, there are obligations, which describe conditions that must eventually be satisfied.

Obligations are incurred as side-effects of operations — for example, an obligation to deallocate a buffer or

close a file may be incurred when allocating a buffer or opening a file. The second extension reflects the

fact that exception conditions are a part of the result behavior of an operation. In robust, fault-tolerant

software, there are a number of different results depending upon whether or not some of the preconditions

are satisfied. It is not always the case that unpredictable behavior results from the falsification of

preconditions. In many cases, the resulting behavior is predictable but with only partial results. It is

important that these partial results be specified as well. Thus, we provide an extension to the Hoare

specification paradigm in which there are multiple sets of results specifications (of postconditions and

obligations).

With these additions, we have extended the semantic interconnection model to include objects such as

obligations and exceptions and additional relations between these objects. For example, the following are

some of relationships that exist among the objects.

• Preconditions and obligations depend on postconditions or are propagated to the encompassing

interface (where eventually they will be satisfied by some postconditions).

• Postconditions satisfy preconditions and obligations and may be propagated to the encompassing

interface (as they are appropriate to the supported abstraction).

• The failure of some preconditions can be handled by exception handlers in such a way as to recover

from the precondition failure. Note that this is not the only way in which exceptions may be handled

(for a discussion of the varieties of exception handling, see [20]).

• Some exceptions can be precluded by the satisfaction of their related preconditions.

Thus, the semantic interconnection model that we use in Inscape is

IM = (

{ ..., preconditions, obligations, postconditions, exceptions } ,

{ ..., "depends on", "satisfies", "propagated", "precludes", "handles", ... }

).

The Inscape Environment [19] provides a module interface specification language, Instress, in which to

describe the properties of and constraints on data and the behavior of operations. The Inform program

construction component of the environment uses these interface specifications in symbiosis with the

programmer to construct components of the system. As a component is constructed, the environment

records these relationships, enforces the consistent use of the interface specifications, and enforces the

semantics of program construction with respect to these interfaces.

We present the example below to illustrate how Inscape uses semantic interconnections in the construction

of a simple operation and to show the relationship between the implementation of the operation and its

automatically propagated interface. In this example, we implement a procedure ObtainRecord in the

context of a file system of distinctly named files, where each file consists of a set of records denoted by

record numbers. ObtainRecord obtains a designated record from the specified file. Note that in this

example we treat only the successful case (for the sake of simplicity); we do not present any of the

exceptional conditions that would be present in a normal specification and implementation).

The operation ReadRecord (figure 1)comes close to providing the functionality that we desire for the target

operation ObtainRecord. Note, however, that there are a number of preconditions that must be satisfied

before it can read the record successfully.

Figure 1

Preconditions : ValidFilePtr (FP)
FileOpen (FP)
LegalRecordNr (R)
RecordExists (R)
RecordReadable (R)
RecordConsistent (R)

R1
R2
R3
R4
R5
R6

ReadRecord (FP, R, &L, &Bufptr)

Postconditions : ValidFilePtr (FP)
FileOpen (FP)
LegalRecordNr (R)
RecordExists (R)
Was (RecordReadable (R))
Was (RecordConsistent (R))
Allocated (*Bufptr)
0 <= L <= Allocated (*Bufptr)
RecordIn (*Bufptr)

R7
R8
R9
R10
R11
R12
R13
R14
R15

Obligations : Deallocated (*Bufptr) R16

Two of these preconditions can be satisfied by the operation OpenFile (shown in figure 2): postconditions

O5 and O6 satisfy preconditions R1 and R2. Note that in the process of using OpenFile, we have incurred

an obligation to close the file.

Figure 2

Preconditions : LegalFileName (F)
FileExists (F)

O1
O2

OpenFile (F, &FP)

Postconditions : LegalFileName (F)
FileExists (F)
ValidFilePtr (FP)
FileOpen (FP)

O3
O4
O5
O6

Obligations : FileClosed(FP) O7

This obligation can be satisfied by the operation CloseFile by one of its postconditions (namely C4) as

illustrated in figure 3. The preconditions of CloseFile, C1 and C2, can be satisfied by the postconditions,

R7 and R8, of ReadRecord.

Figure 3

Preconditions : ValidFilePtr (FP)
FileOpen (FP)

C1
C2

CloseFile (FP)

Postconditions : Not (ValidFilePtr (outvalue (FP)))
FileClosed (invalue (FP))

C3
C4

Obligations : <none>

Figure 4 illustrates graphically the implementation of ObtainRecord as the sequence of three operation

calls: OpenFile, ReadRecord, and CloseFile. The abbreviations at the top of each box represent each

operations preconditions; the abbreviations at the bottom, postconditions; and the abbreviations at the right

side, obligations. Note that not all of the preconditions of OpenFile or ReadRecord have been satisfied

within the implementation. (Those that have been satisfied are depicted as circled abbreviations connected

by arrows.) These preconditions must be satisfied somewhere, and since they have not been satisfied within

the implementation, they must be satisfied outside the implementation and, hence, are exported to the

enclosing operation’s interface: O1 and O2; R3 through R6.

O1 O2

OPENFILE

O3 O4 O5 O6

O7

R1 R2 R3 - R6

READRECORD

R7 R8 R9 - R15

R16

C1 C2

CLOSEFILE

C3 C4

Some of the postconditions known to be true after the execution of CloseFile are not exported to the

encompassing interface because they are not appropriate to the abstraction presented by ObtainRecord —

for example C3 and C4. The notion of files being opened or closed and the concept of file pointers are not

needed by the user of the implemented operation. However, the facts known about the file and specific

record are of importance and are thus propagated to the enclosing interface (cf. postconditions O3 and O4,

and R9 through R15. Finally, we must propagate the unsatisfied obligation of ReadRecord, R16, to the

interface of ObtainRecord.

Figure 5

Preconditions : LegalFileName (F)
FileExists (F)
LegalRecordNr (R)
RecordExists (R)
RecordReadable (R)
RecordConsistent (R)

O1
O2
R3
R4
R5
R6

ObtainRecord (FP, R, &L, &Bufptr)

Postconditions : LegalFileName (F)
FileExists (F)
LegalRecordNr (R)
RecordExists (R)
Was (RecordReadable (R))
Was (RecordConsistent (R))
Allocated(*Bufptr)
0 <= L <= Allocated (*Bufptr)
RecordIn (*Bufptr)

O3
O4
R9
R10
R11
R12
R13
R14
R15

Obligations : Deallocated (*Bufptr) R16

Figure 5 illustrates Obtain Record’s interface as generated from its implementation.

4.3 Predicates and Program Evolution

The details of interconnections recorded while constructing the system form the basis for Infuse [21] — the

change management component of Inscape — which has the ability to determine the implications and

extent of changes. When changes occur, either to interfaces or to implementations, the effects of these

changes can be detected by determining the preconditions, postconditions, obligations, and exceptions that

are affected by the change and by tracing (recursively) how these modifications affect the components that

use them. For example, if predicates are removed from an interface specification, the environment can

determine how this removal affects the components where the changed component is used. Some of the

relationships that existed previously may no longer exist — that is, some of the interconnections may no

longer be made. The following kinds of situations can be determined by the environment with respect to

changes to interface specifications.

• If a precondition or obligation is deleted, or a postcondition is added, it can be determined whether

some sequence of code is redundant.

• If a precondition or obligation is added, or a postcondition is deleted, it can be determined whether

some sequence of code must be added in order to satisfy the added predicate or supplant the delete one.

• If predicates are added or deleted, it can be determined whether the changes have no effect at all on the

implementation.

Conversely, if changes are made to the implementation, it can be determined what effects these changes

have on the implementation and on the propagated interface. The environment determines the effects

analogously to the changes to interfaces: whether there is redundant code, new code needed, or no effect at

all. The same holds true for an implementation change and its effect on the propagated interface.

Given that the environment can determine the implications and extent of changes, we provide the facilities

to simulate changes in addition to propagating them. In this way, the developer can determine whether a

set of changes might have too adverse an effect or not before committing to those changes.

Finally, Infuse guarantees that the implications of changes will be carried out completely and consistently.

As consistency is at the deeper level of semantics, the system builder gains more from the environment than

he or she would where consistency is only at the level of syntax.

4.4 Predicates and Version Control

Inscape’s version control mechanism, Invariant [22], uses the same model as Inform and Infuse use in order

to provide a formalization of version control that has a number of significant advantages over version

control mechanisms that use either the unit or syntactic interconnection models. Most notable is the notion

of plug-compatibility which arises from Invariant’s concepts of version equivalence and version

compatibility. Briefly, versions are equivalent if their interfaces are identical; versions are compatible if

they can be used (with various kinds of benign or even deleterious effects — depending upon the particular

kind of version compatibility) interchangeably. Since we reason at the level of behavior provided and

behavior used in the construction of systems out of components, we exploit the fact that the environment

knows what behavior has been used in the construction of the system and the fact the environment can

determine the extent to which similar but not necessarily equivalent versions can be substituted into a

system model.

Furthermore, as the consistency of the implementations and interfaces is something that Inscape can

guarantee (within the level of consistency supported by the implementation of the environment — this is

one of the trade-offs made: how weak a logic is needed versus how strong a logic can be supported),

Invariant can check the consistency of the system models with respect to their semantics, not just their

syntax.

5. Conclusions

The semantic interconnection model incorporates the advantages of the unit and syntactic interconnection

models and provides extremely useful extensions to them. By refining the grain of interconnections to the

level of semantics (that is, to the predicates that define aspects of behavior) we provide tools that are better

suited to manage the details of evolution in software systems and that provide a better understanding of the

implications of changes. We do this by using the semantic interconnection model to formalize the

semantics of program construction, the semantics of changes, and the semantics of version equivalence and

compatibility. Thus, with this formalization, we provide tools that are knowledgeable about the process of

system construction and evolution and that work in symbiosis with the system builders to construct and

evolve large software systems.

Acknowledgements

Peggy Quinn provided careful readings and numerous useful suggestions.

References

[1] Military Standard: Ada Programming Language, ANSI/MIL-STD-1815A, 22 January 1983.

[2] Robert Balzer. ‘‘Automated Enhancement of Knowledge Representations’’, IJCAI-85 Conference
Proceedings, Los Angeles, August, 1985.

[3] Edsgar W. Dijkstra. The Discipline of Programming. Prentice-Hall, 1976.

[4] S. I. Feldman. ‘‘Make - a program for maintaining computer programs’’, Software — Practice &
Experience, 9 (1979). pp 255-265.

[5] Special Issue on the Gandalf Project, The Journal of Systems and Software, 5:2 (May 1985).

[6] J. A. Goguen and J. J. Tardo. ‘‘An Introduction to OBJ: A Language for Writing and Testing
Formal Algebraic Program Specifications’’, Proceedings of a Conference on Specifications of
Reliable Software, IEEE Computer Society, April 1979, pp 170-189.

[7] J. V. Guttag, J. J. Horning, and J. M. Wing. ‘‘The Larch Family of Specification Languages’’, IEEE
Software, 2:5 (September 1985), pp.24-36.

[8] A. Nico Habermann and Dewayne E. Perry. ‘‘System Composition and Version Control for Ada’’,
in Software Engineering Environments. H. Huenke, editor. North-Holland, 1981. pp 331-343.

[9] A. Nico Habermann, et al. The Second Compendium of Gandalf Documentation. Department of
Computer Science, Carnegie-Mellon University. 24 May 1982.

[10] C. A. R. Hoare. ‘‘An Axiomatic Approach to Computer Programming’’, CACM 12:10 (October
1969). pp 576-580, 583.

[11] Gail E. Kaiser and A. Nico Habermann. ‘‘An Environment for System Version Control’’, Digest of
Papers Spring CompCon ’83, IEEE Computer Society Press, February 1983. pp. 415-420.

[12] Charles W. Krueger. The SMILE User’s Guide. Carnegie-Mellon University, Department of
Computer Science, The Gandalf Project, Draft, October 1985.

[13] Butler W. Lampson and Eric E. Schmidt. ‘‘Organizing Software in a Distributed Environment’’,
Proceedings of the Sigplan ’83 Symposium on Programming Language Issues in Software Systems.
Sigplan Notices, 18:6 (June 1983).

[14] David B. Leblang and Gordon D. McLean, Jr. ‘‘Computer-Aided Software Engineering in a
Distributed Workstation Environment’’, Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development Environments, SIGPLAN Notices, 19:5
(May 1984). pp. 104-112.

[15] David Luckham and Friedrich W. von Henke. ‘‘An Overview of Anna, A Specification Language
for Ada’’, IEEE Software, 2:2 (March 1985). pp. 24-33.

[16] S. C. Johnson. ‘‘Lint, a C Program Checker’’, Unix Programmer’s Manual, AT&T Bell
Laboratories, 1978.

[17] David S. Notkin. ‘‘The Gandalf Project’’, The Journal of Systems and Software, 5:2 (May 1985).
pp. 91-105.

[18] Dewayne E. Perry. ‘‘Position Paper: The Constructive Use of Module Interface Specifications’’,
Third International Workshop on Software Specification and Design. IEEE Computer Society,
August 26-27, 1985, London, England.

[19] Dewayne E. Perry. The Inscape Program Construction and Evolution Environment. Technical
Report. Computer Technology Research Laboratory Technical Report, AT&T Bell Laboratories,
August 1986.

[20] Dewayne E. Perry. The Construction of Robust, Fault-Tolerant Software in the Inscape
Environment. Technical Report. Computer Technology Research Laboratory, AT&T Bell
Laboratories, September 1986.

[21] Dewayne E. Perry and Gail E. Kaiser. ‘‘Infuse: A Tool for Automatically Managing and
Coordinating Source Changes in Large Systems’’, Proceedings of the 1987 ACM Computer Science
Conference, February 17-19, 1987, St. Louis MO.

[22] Dewayne E. Perry. ‘‘Version Control in the Inscape Environment’’, This proceedings, Proceedings
of the 9th International Conference on Software Engineering, March 30 - April 2, 1987, Monterey
CA.

[23] D. M. Ritchie. The C Programming Language - Reference Manual. AT&T Bell Laboratories,
September 1980.

[24] M. J. Rochkind. ‘‘The source code control system’’, IEEE Transactions on Software Engineering,
SE-1 (1975). pp 364-370.

[25] Joseph L. Steffen. ‘‘Interactive Examination of a C Program with Cscope’’, USENIX Winter
Conference Proceedings, Dallas 1985, pp. 170-175.

[26] Warren Teitelman and Larry Masinter. ‘‘The Interlisp Programming Environment’’, Computer,
14:4 (April 1981), pp. 25-34.

[27] Walter F. Tichy. ‘‘RCS — A System for Version Control’’, Software — Practice and Experience,
15:7 (July 1985). pp. 637-654.

[28] Walter F. Tichy. ‘‘Smart Recompilation’’, ACM Transactions on Programming Languages and
Systems, 8:3 (July 1986), pp.273-291.

[29] W. A. Wulf, R. L. London, M. Shaw. ‘‘Abstraction and Verification in Alphard: Introduction to
Language and Methodology’’, IEEE Transactions on Software Engineering, Vol. SE-2:4 (December
1976). pp 253-265.

