
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Computer Technology Research Laboratory
Technical Report

Version Control in the Inscape Environment

Dewayne E. Perry

published in

Proceedings of the 9th International Conference on Software Engineering.
March 30 - April 2, 1987, Monterey CA.

pages 142-149.

Version Control in the Inscape Environment

Dewayne E. Perry
AT&T Bell Laboratories
Murray Hill, NJ 07974

(201) 582-2529

Abstract

We present the important issues to be considered in version control mechanisms and
characterize and compare the kinds of version control systems extant in current
programming environments. We then characterize Inscape’s version control mechanism,
Invariant, and show that it makes several significant advances in the state of the art.
Using Instress (Inscape’s module interface specification language) specifications,
Invariant provides a better understanding of the notion of parallel versions, a more
comprehensive notion of version consistency, and a more flexible method of system
composition than current mechanisms. In particular, Invariant provides a formalization
of the notions of version equivalence and compatibility that correspond closely with our
intuitive (and practical) notions of version equivalence and compatibility. These various
forms of version compatibility provide the system builder with the concept of plug-
compatibility — an extremely useful facility in composing systems from component
parts.

1. Introduction

An extremely important problem in building large software systems is that of programming-in-the-large [1]

— that is, building a large system out of components built by a number of programmers. There are four

interrelated aspects to the programming-in-the-large process:

• describing the interfaces for the individual components,

• managing the variants of these interfaces and their implementations as the systems evolve,

• modeling, or configuring, the system from its components, and

• generating a system from its model or configuration specification.*

The design of each of these aspects affects the functionality that is possible in the others — each cannot be

considered in isolation, but must be considered as part of the whole. In this paper, we consider the

implications that the kinds of interface specifications found in the Inscape Environment [8] have on the

problems of managing system and component variants and of configuring a system from its components.

We first discuss the background and present the issues found in what is generally referred to as version

control. Second, we characterize and compare the kinds of version control systems extant in current

programming environments. We then characterize Inscape’s version control mechanism, Invariant, and

describe its facilities. Finally, we summarize our contributions and compare them to current version control

mechanisms.

2. Background and Issues

Multiple software versions arise in the building and evolving of software systems for a variety of reasons:

error corrections, enhancements, alternate implementations for identical interfaces, divergent functionality

for different uses, and differing system configurations. The result is an exceedingly difficult problem

managing multiple software versions that arise during system evolution.

We distinguish three different kinds of versions: successive, parallel, and composed versions.** Successive

versions are those that result from the small corrections and improvements that occur in the development

process. They represent refinements to previous versions. Parallel versions are those that result from

providing alternate implementations or divergent functionality. In the first case, the implementations

usually represent different space-time trade-offs in the implementation of a single interface specification; in

the second case, various uses of a component require a large degree of common functionality but with

differences that are significant for each individual use. Composed versions are those that result from

constructing a component from separate pieces, such as subsystems from modules, or modules from

* I distinguish the modeling from the generation of systems because the system generation mechanism may use more information
than is provided by the system model and because other components in the programming environment may use the modeling
information.

** Whenever we use the term version in the remainder of the paper, we mean software version.

syntactic objects.

A number of important questions arise from these distinctions. When does a revision generate a new

parallel version instead of merely another successive version? When does a parallel version become a

different version altogether? How does one determine the correct version to use when building a system?

How will different versions interact — will they be consistent?

In answering such questions, we must consider the following important issues: version identification,*

equivalence, compatibility, and consistency. Each of the mechanisms discussed below will provide explicit

meaning to each of these terms. We give intuitive definitions here to provide a standard against which to

evaluate these mechanisms.

Version Identification Version identification enables us to distinguish one version from

another.

Version Equivalence If two versions are equivalent, we ought to be able to use them

interchangeably without any unexpected effects.

Version Compatibility Compatibility is not as strict as equivalence. For example, we have an

intuitive understanding of upward compatibility: an upward compatible

version preserves the functionality of the previous version but makes

some extensions; however, previous uses should remain unaffected by

the changes.

Version Consistency There are two forms of version consistency: syntactic consistency and

semantic consistency. A version is syntactically consistent with a set of

components in a composed version when it does not cause any syntax

or type-checking errors to occur. A version is semantically consistent

with a set of components in a composed version when it does not cause

semantic (or functionality) errors to occur — that is, it provides the

behavior that is required by the system.

3. Current Version Control Mechanisms

There are three general approaches to the problems of version control and system configuration that exist in

current software development environments: no control at all, basic version control, and strongly-typed

version control. We describe and evaluate each of these both in terms of the kinds of versions they support

and in terms of their solutions to the basic issues in version control.

* Note that we do not discuss the problem of one version being identical to another. It is sufficient for our discussion here to be able
to distinguish different versions by some means of identification and then talk about equivalent versions, instead of identical
versions. Thus we sidestep the philosophical and legal problems of what it means for two versions to be identical.

3.1 No Version Control

It is surprising how many systems are still built without a version control mechanism as part of the

development environment. At best, developers may get some notion of successive versions from the file

system (if the file system incorporates some form of backup files); at worst, there is no notion at all of

successive versions, only the current version. There may be some vague notion of parallel versions where

the current version gets frozen for a particular release. Composed versions are whatever was thrown

together at one particular time with no concept of a configuration specification.

The identification, equivalence, and compatibility of versions are determined by programmer fiat: versions

are identified by the programmer; versions are equivalent or compatible because they are said to be so by

the programmer. Version consistency, on the other hand, is determined by a cycle of compile, link,

execute, and test.

In summary, there is no control at all. System building is a very error-prone process because there is no

means of determining clearly what needs to be incorporated into the system or how it is to be done.

Furthermore, it is extremely difficult to reconstruct previous versions should the current system prove to be

unusable.

3.2 Basic Version Control

Systems such as SCCS [10], RCS [11], Cedar’s System Modeler [5], and Apollo’s DSEE [6] provide basic

version control.* The three kinds of versions (successive, parallel and composed versions) are supported

within the version control system. Versions are distinguished by their version identifiers which in their

simplest form are a pair of numbers separated by dots — for example, 1.4, 4.17, etc. The first number

indicates the basic version and the second indicates the revision (i.e., the successive revision). Successive

and parallel versions are distinguished from each other (by convention) by the form of their version

identifiers: to create a new parallel version, append another "n.1" to the current version number where n is

the nth parallel version spawned from that version; to create a new successive version, increment the

rightmost number of the version identifier. For example, 3.5.1.1 and 3.5.2.1 are two new parallel versions

created from version 3.5; 3.6 is the new successive version created from version 3.5.

Composed versions are denoted by source lists defined by the user. These source lists define the unit

components in the composition and specify the appropriate versions that are to be used. For example, {CC

1.4, Grep 3.2.1.1, ... , Stdio 1.17} and { * *.4.1 } might be two such compositions. The first lists each

version explicitly; the second might designate all of the initial versions in release 4.

This basic approach to version control provides a workable solution to the problem of version identity.

Modules are reserved for making changes and then deposited back into the version control system when the

changes are completed. At the time of reservation, a new version identifier is automatically generated and

assigned to the modified component. Unfortunately, there is no system notion of version equivalence or

* We describe here a generalization of SCCS and RCS. System Modeler and DSEE, while richer in functionality and different in
details, still support only this basic form of version control.

compatibility. Consistency, as in the case where there is no version control mechanism, is determined by

the cycle of compile, link, execute, and test.

While we have support for the required kinds of versions, there is no system-determined difference between

successive and parallel versions — that is, there is no internal rationale that distinguishes them; as in

systems with no control, they are determined by programmer fiat. Note, however, there is often an

administrative rationale provided for creating new parallel versions — for example, each release may create

new parallel versions.

Compositions in SCCS and RCS must explicitly designate each version of each component that is to be

included in the system. There is no notion of default version. Furthermore, the actual dependencies

between components in the system configuration are implicit in the code and not explicit in the descriptions

of the versions.

3.3 Strongly Typed Version Control

Where basic version control mechanisms provide version control at the level of files or modules, strongly

typed version control mechanisms such as Gandalf’s SVCE (see [2] and [4]) provide a version control

mechanism at the level of syntactic objects — that is, the granularity of versions is smaller than files or

modules; it is at the level of procedures, functions, data structures, etc. In SVCE, not only are successive,

parallel and composed versions supported by the mechanism, they are syntactic objects in SVCE’s

programming-in-the-large language. These different kinds of versions are understood as part of the

language to describe versions and systems. Successive revisions are produced automatically as part of the

SVCE environment’s management of the change process. Parallel versions, on the other hand, are still

determined by programmer choice as in the previous mechanism.

In SVCE, compositions refer to syntactic objects (such as procedures, modules, data structures, etc.) and

may refer to them in varying degrees of specificity. For example, a composition may refer to a specific

version, the latest version, or the current default version.* Where dependencies in the basic mechanisms

were implicit, SVCE provides facilities for explicitly defining these dependencies. Using these facilities,

the builder of components can determine clearly what is required in order to configure a specific portion of

a system.

Version identification in SVCE is better (and intuitively easier to comprehend) than that provided by

SCCS-style mechanisms. There are distinct means of identification for parallel and successive versions.

To obtain a particular version, the builder specifies the particular successive version of a particular parallel

version. For example, a complete version identifier consists of the parallel version identifier concatenated

with the appropriate successive version identifier. This latter identifier, as in the previous mechanism, is

generated automatically by the system at the time of deposit after a sequence of changes.

* System Modeler and DSEE provide similar facilities but for the file and module level of version specifications.

Version equivalence in this type of version control mechanism is defined in terms of syntactic equivalence:

data objects are equivalent if their types or structures are equivalent; operations and modules are equivalent

if their signatures are equivalent. (Signatures of operations are equivalent if the operation names are

identical and the number, order and types of the arguments are identical. Modules are equivalent if their

names are identical and their components are equivalent.) However, there is no explicit notion of version

compatibility except in the sense that what is not equivalent is incompatible.

As this is a mechanism that is built upon the foundations of strong typing, it is not surprising that the

syntactic consistency is guaranteed by the version control mechanism. The composition specifications can

be type-checked by the system independent of the system generation cycle. However, the semantic

consistency of composed versions must still be determined by the generate and test cycle.

While there are significant gains in functionality and in system support with these kinds of version control

mechanisms, there are still some important problems that have not been solved well. The notion of version

equivalence does not correspond to our intuitive notion of version equivalence. On the one hand, the

strongly typed definition is too broad. Versions are considered equivalent that clearly are not equivalent in

our intuitive sense of equivalence. For example, two versions of an operation may have the same signature

but have radically different functionality. This case violates our intuitive sense of equivalence where we

ought to be able to substitute the one for the other without any difference in the system execution. On the

other hand, the strongly typed definition is too narrow. Versions are not considered as equivalent where

intuitively we would consider them to be so. Consider the case where operations A and B provide exactly

the same functionality but have different signatures (which in this mechanism guarantees their

incompatibility and, hence, their non-equivalence). Furthermore, the notion of compatibility is too strict.

For example, consider the operations P(int) and P(int, bool). According to their parameter types, they are

incompatible, but in an intuitive sense, the second is the upward compatible version of the first — the

second preserves the functionality of the first and extends it in a small way by means of the second

parameter.

4. Invariant, Inscape’s Version Control Mechanism

The Inscape Environment is an environment for constructing and evolving large software systems and is

based on the constructive use of formal module interface specifications [7]. These interface specifications

describe the semantics of data and operations and are used by the environment* to enforce automatically

their consistent use and to form the basis of a symbiotic relationship between the developer and the

environment in the construction and evolution of large systems.

We present an overview of Instress, Inscape’s module interface specification language, in order to give the

reader an intuition for the specifications used in Inscape. We then discuss the notions of versions and

Invariant’s solutions to version control issues, describing in detail the precise definitions of version

* See [9] for a discussion of the semantic interconnection model that provides the basis for Inscape and its ability to use
specifications symbiotically with the programmer.

equivalence and compatibility that result from our specification approach. Finally, we evaluate our

mechanism and compare it with the preceding mechanisms.

4.1 Inscape’s Module Interface Specifications

ReadRecord (<in> fileptr FP; <in> int R;
<out> int L; <out> buffer B)

Preconditions:
ValidFilePtr(FP)
FileOpen(FP)
LegalRecordNr(R)
RecordExists(R)
RecordReadable(R)
RecordConsistent(R)

Postconditions:
ValidFilePtr(FP)
FileOpen(FP)
LegalRecordNr(R)
RecordExists(R)
was RecordReadable(R)
was RecordConsistent(R)
Allocated(B)
RecordIn(B)
BufferSizeSufficient(B, L)

Obligations:
Deallocated(B)

Example 1

Instress (the module interface specification language) extends Hoare’s input/output predicates [3] in order

to describe the properties of data and the behavior of operations. In addition to Hoare’s preconditions and

postconditions, we introduce the notion of obligations to extend the specification of an operation’s results.

Postconditions by themselves are not sufficient to capture all the side-effects of an operation; they describe

what is known to be true after the execution of an operation, but do not specify what the programmer is

obliged to satisfy eventually as a result of using the operation (e.g., closing files, deallocating buffers,

making data consistent, etc.). Example 1 illustrates what a specification might look like for the successful

execution of reading a record from a file. Further, we provide the notion of multiple results so that

exceptions can be precisely and exactly specified in terms of what they mean (i.e., their postconditions) and

what is minimally required to handle them (i.e., their obligations). Pragmatic information is also included

with the exception specifications to indicate recommended recovery techniques or specific recovery

operations. Example 2 illustrates what an exception specification might look like for the ReadRecord

operation where the data is readable but not consistent.

We use this Hoare-like approach in Instress rather than an algebraic approach such as [Goguen 82] and

[Guttag 85] because it seems better suited to specifying exceptions and obligations that may occur and what

they mean when they do occur.

Exception:
RecordInconsistent(R)

Postconditions:
ValidFilePtr(FP)
FileOpen(FP)
LegalRecordNr(R)
RecordExists(R)
was RecordReadable(R)
not RecordConsistent(R)
Allocated(B)
RecordIn(B)
BufferSizeSufficient(B, L)

Obligations:
Deallocated(B)

Recovery:
ReconstructRecord(L, B)

Example 2

4.2 Versions and Issues

The notions of versions in Invariant are quite similar to those found in SVCE. We extend SVCE to

incorporate Inscape’s knowledge about the specifications of the semantics of module interfaces. Successive

versions are the same as in SVCE and compositions are similar to, but more flexible than, those in SVCE.

It is in parallel versions that Invariant provides a significant difference over the preceding version control

mechanisms: Invariant can distinguish different parallel versions to the extent that they exhibit similar but

slightly different behavior. The extent to which this can be accomplished will be made clear in the

discussion below.

Basic version control and strongly typed version control mechanisms provide us with workable notions of

version identity. These mechanisms are deficient, however, in providing notions of version equivalence

and compatibility that correspond to our intuitive understanding of these concepts. Given the behavioral

specifications provided by Instress, Invariant provides precise definitions of these concepts that do

correspond very closely to our intuition. Moreover, we introduce some further distinctions about

compatibility that are very useful in the composition of systems within the Inscape Environment and that

provide the system builder with considerably more flexibility in this building process than any other version

control mechanism.

As we have extended the notions of equivalence and compatibility on the basis of the semantic

specifications, so we extend in Invariant the amount of consistency checking than can be performed on

system compositions. As in SVCE, we guarantee the syntactic consistency among the objects in the

composition, but in a looser sense than found in strongly typed systems. There is some relaxation possible

concerning the signatures in syntax checking. The discussions in the next two sections will clarify how this

is done. Furthermore, semantic consistency among the components is guaranteed (within the limits of the

strength of consistency checking provided by the Inscape Environment — see [8]).

4.3 Version Identity and Equivalence

For purposes of simplifying the discussion, we limit the scope of the definitions to a single successful result

of an operation — the extension to multiple results (i.e., exceptional results) incorporates the same

considerations that we discuss in the single successful case and the extension to data specifications can be

made by analogy. There should be no loss of generality by making this simplification.

Let us begin with the following simple and straightforward definition of the interface identity of an

operation. In this definition, we are concerned with the uses of these interfaces, not their definitions. Thus,

the problem whether interfaces, that differ only in their choice of parameter names, are identical disappears

since it is their instantiations with arguments that are used to determine identity.

An operation interface I2 is identical to I1 if and only if

PRE(I1) = PRE(I2) and

POST(I1) = POST(I2) and

OBL(I1) = OBL(I2).

Where PRE(I) is the set of preconditions for operation I,

POST(I) is the set of postconditions for operation I, and

OBL(I) is the set of obligations for operation I.

While the notion of version identity is not needed in the subsequent discussion, we can define it in a general

way if we ignore the philosophical and legal problems in the definition of the notion of two

implementations being identical.

A version V2 is identical to version V1 if and only if

the interface of V2 is identical to the interface of V1 and

their implementations are identical.

More important is the notion of version equivalence.

A Version V2 is equivalent to version V1 if and only if

their interfaces are identical.

4.4 Version Compatibility

We present four different kinds of compatibility: strict, upward, implementation, and system compatibility.

The first two are forms of our intuitive notion of upward compatibility: the first captures the notion of

substitutability and the second captures the notion of extended functionality. The first notion is, in fact, the

more useful of the two as far as building systems is concerned.

Version V2 is a strictly compatible version of V1 if and only if

PRE(V1) ⊇ PRE(V2) and

POST(V1) ⊆ POST(V2) and

OBL(V1) = OBL(V2).

That is, version V2 is a strictly compatible version of V1 if and only if it assumes no more than V1,

guarantees no less than V1, and obliges the same as V1.* This form of compatibility guarantees that a

strictly compatible version may be substituted for any occurrence of a version it is compatible with for the

following reasons:

• since its preconditions are a subset of the original, they will be either be satisfied or propagated in

exactly the same way as the original occurrence;

• since its postconditions are a superset of the originals, all dependencies provided by the original

occurrence will still be satisfied by this version (at worst, there will be a beneficial side effect in that

some preconditions may be satisfied that were not satisfied before); and

• as the obligations are identical, there will be no change in the interconnections as a result of the

substitution.

The second form of compatibility we call upward compatibility because the original functionality is

preserved while it is extended.

Version V2 is an upwardly compatible version of V1 if and only if

PRE(V1) ⊆ PRE(V2) and

POST(V1) ⊆ POST(V2) and

OBL(V1) ⊆ OBL(V2).

While this form is useful in determining, for example, when a new version is still a parallel version of the

previous version, it is not as useful as the first in determining substitutability in composing or generating

new components.

Strict and upward compatibility place restrictions on what might be suitable as a substituted component in a

system composition. There are situations where we might find these restrictions too constraining. For

example, we often use only a part of the functionality of an operation rather than its entire functionality. If

another operation provides that bit of functionality that we use in the original, we might want to consider it

* Note that if V1’s obligations are included in V2’s, then the source may have to be modified to cover the extra obligations incurred
by V2. Similarly, if V2’s obligations are included in V1’s, then it may be the case that too much is done in the implementation if
V2 is substituted for V1 — that is, obligations will be met that are non-existent.

as a replacement component in a composition even though it is neither strictly nor upwardly compatible

with the original version.** To this end we introduce several forms of the notion of implementation

compatibility: exact, strong, and weak implementation compatibility. These different forms represent

degrees of relaxation of the constraints on the extent of the effects that we are willing to accept in the

substitution of one version for another.

A version is exactly implementation compatible with another in the implementation of an operation if it has

no effect on the propagated interface** of that operation.

A version V2 is exactly implementation compatible with V1 if and only if

PI{..., V1, ...} = PI{..., V2, ...}

Where PI{...} is the propagated interface of the implementation and

{..., V, ...} is the implementation with version V.

Clearly, any version that is equivalent is also exactly implementation compatible. A version that is strictly

compatible may be exactly implementation compatible, depending upon the characteristics of the interface

and the implementation. For example, a strictly compatible version may be exactly implementation

compatible in one occurrence but not in another. It is also possible for a weaker version (that is, one that

guarantees less functionality) to be exactly implementation compatible if those results of the original

version not covered by the weaker version are duplicated elsewhere in the implementation.

We relax that constraint on effects on the propagated interface slightly and consider a version to be strongly

implementation compatible with another in the implementation of an operation if it has only what we

intuitively consider to be acceptable, or benign, effects.

A version V2 is strongly implementation compatible with V1 if and only if

PI{..., V2, ...} is a strictly compatible version of PI{..., V1, ...}

Clearly, a strictly compatible version will be strongly implementation compatible. Here, as in the more

restrictive form, it is possible for an operation not to be strictly or upwardly compatible and still be strongly

implementation compatible.

** Note that there are certain facilities that we need to make this practical in terms of the programming language support. Facilities
like Ada’s default values for parameters, C’s ability to have parameter lists of arbitrary length, and Prolog’s "don’t care" argument
are the kinds of features that would expedite this approach.

** In [8], we discuss the construction of components on the basis of the Instress interface specifications and describe how an interface
is automatically constructed from its implementation. This automatically constructed interface represents the propagatable
interface — that is, it represents all requirements and functionality that result from the implementation. While some requirements
and results must be propagated, there are some that may be optionally propagated depending on how they arise in the
implementation, thus reducing the strength of the results to be guaranteed by the interface. This user-selected interface is the
propagated interface.

A much weaker form that allows immediately unacceptable effects that eventually become acceptable —

like the ripples resulting from a pebble thrown into a calm pond that eventually subside — is that in which

one version is weakly implementation compatible with another. Virtually any version is a candidate for this

form of compatibility. The only requirement is that at some point, the effects of the substitution of one

version for another eventually cease to have an effect — that is, in propagating the resulting changes

throughout the implementation of the system, at some point, there are no longer any effects, or at worst,

there are only benign effects.

We extend the notion of implementation compatibility to that of system compatibility — if each occurrence

of the substitution of the one version for another has the same form of implementation compatibility, then it

has that form of system compatibility.

A version V2 is α system compatible with V1 if and only if

V2 is an α implementation compatible version of V1

for all occurrences of V1 in the system.

where α is either "exactly", "strongly" or "weakly".

5. Summary

The use of Inscape’s module interface specification language Instress as a programming-in-the-large

language enables us to make several significant advances in the state of the art of version control. With

respect to the kinds of versions that are supported in version control mechanisms, Invariant provides the

following advances.

• The environment has a better understanding about the notion of parallel versions — one can talk about

parallel versions either in terms of version equivalence or, possibly, upward compatibility. The

problems concerning questions about parallel versions are by no means all solved, but Invariant’s

facilities for determining version equivalence and compatibility provide a start towards solving them.

• Invariant provides a more liberal, flexible method of composition wherein pieces of the system can be

built from other components than is available in other version control mechanisms. Compositions are

freed from the adverse restrictions of strong typing and instead are guided by the notions of version

equivalence and compatibility that incorporate the more useful aspects of strong typing with the

semantic specifications of interfaces.

It is with respect to the issues of version equivalence, compatibility and consistency, that Invariant’s

formalization offers the most significant contributions.

• Inscape’s consistency checking, used in the process of constructing and evolving systems, is used by

Invariant to determine the consistency of different versions in the process of building systems out of

components.

• The definition of version equivalence provided by Invariant matches our intuitive notion that versions

are equivalent when they have identical behavior.

• The various forms of compatibility correspond very closely to our intuitive notions about compatibility

among versions. Moreover, these forms of compatibility provide a unique notion of version plug-

compatibility that enables the system builder a high degree of freedom and flexibility in composing

systems. The builder may substitute for the original components either equivalent versions (with no ill

effects) or non-equivalent but compatible versions (and use Invariant to determine the effects of these

substitutions).

References

[1] Frank DeRemer and Hans H. Kron. "Programming-in-the-Large Versus Programming-in-the-

Small", IEEE Transactions on Software Engineering, SE-2 (June 1976). pp. 80-86.

[2] A. Nico Habermann and Dewayne E. Perry. "System Composition and Version Control for Ada",

Software Engineering Environments. H. Huenke, editor. North-Holland, 1981. pp. 331-343.

[3] C. A. R. Hoare. "An Axiomatic Approach to Computer Programming", CACM 12:10 (October

1969). pp. 576-580, 583.

[4] Gail E. Kaiser and A. Nico Habermann. "An Environment for System Version Control", Digest of

Papers Spring CompCon ’83, IEEE Computer Society Press, February 1983. pp. 415-420.

[5] Butler W. Lampson and Eric E. Schmidt. "Organizing Software in a Distributed Environment",

Proceedings of the SIGPLAN ’83 Symposium on Programming Language Issues in Software

Systems, SIGPLAN Notices, 18:6 (June 1983).

[6] David B. Leblang and Gordon D. McLean, Jr. "Computer-Aided Software Engineering in a

Distributed Workstation Environment", Proceedings of the ACM SIGSOFT/SIGPLAN Software

Engineering Symposium on Practical Software Development Environments, SIGPLAN Notices, 19:5

(May 1984). pp. 104-112.

[7] Dewayne E. Perry. "Position Paper: The Constructive Use of Module Interface Specifications",

Third International Workshop on Software Specification and Design. IEEE Computer Society,

August 26-27, 1985, London, England.

[8] Dewayne E. Perry. The Inscape Program Construction and Evolution Environment. Technical

Report. Computer Technology Research Lab, AT&T Bell Laboratories, August 1986.

[9] Dewayne E. Perry. "Software Interconnection Models", This proceedings, Proceedings of the 9th

International Conference on Software Engineering, March 30 — April 2, 1987, Monterey CA.

[10] M. J. Rochkind. "The source code control system", IEEE Transactions on Software Engineering,

SE-1 (1975). pp. 364-370.

[11] Walter F. Tichy. "RCS - A System for Version Control", Software — Practice & Experience, 15:7

(July 1985). pp. 637-654.

