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Abstract

We introduce and compare two models of cooperation among programmers during
software maintenance. Enforced cooperation is the normal mode of operation when the
sheer size of the software maintenance effort makes laissez-faire management infeasible.
Voluntary cooperation is more common when a small group works together to enhance a
small system or modify a small portion of a large system. We describe a tool, Infuse,
that provides change management in the context of both models of cooperation. We
demonstrate how Infuse automates change propagation and enforces negotiation of
conflicts for the enforced model, but provides less restrictive aids for maintaining
consistency for the voluntary model.
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1. Introduction

The maintenance and evolution of large systems requires cooperation among multiple
programmers, but there are very few models and corresponding tools to support this
cooperation. We introduce and compare two models of cooperation among programmers
doing software maintenance: enforced and voluntary cooperation. We describe a tool,
Infuse, that provides change management in the context of both models.

Enforced cooperation among programmers is necessary for software projects involving
many (for example, 20 or more) programmers. Maintenance typically consists of a
sequence of coordinated, scheduled source code changes each involving a large collection
of modules.** Programmers must cooperate to maintain consistency among these
modules during the modification and testing process. We present a software engineering
environment, Infuse, that automates change management by enforcing such cooperation.
Infuse automatically partitions these modules into a hierarchy of experimental databases.
The partitioning may be determined by the syntactic and/or semantic dependencies
among the modules or according to the dictates of project management. Each
experimental database provides consistency checking among its modules and provides a
forum for the programmers assigned to its modules, or their managers, to negotiate the
interactions among the modules. Infuse requires that the modules within an experimental
database be consistent with each other before permitting these modules to be merged
back into the parent experimental database. This process repeats until the entire
collection of consistently changed modules is merged back into the new release of the
software system.

Voluntary cooperation is possible for projects involving a small number of programmers
(for example, less than 10). Maintenance typically consists of partially ordered sequences
of changes made by individual programmers to a small collection of modules, where
additional modules are dynamically added to each collection as the programmer deems
necessary. Cooperation is required only when multiple changes are made by different
programmers at the same time. Infuse automates this more relaxed form of change
management by providing a workspace in which the programmer makes his changes.
Individual workspaces are combined if the programmers choose to coordinate their
changes; we are concerned in this paper only with these combined workspaces. Each
workspace provides consistency checking among its modules and thus aids the
programmers in making sure the changes are consistent with each other. Infuse also aids
the programmers in merging their changes back into the baseline version of the software
system.

_ ______________
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Infuse supports both experimental databases and workspaces, and both may be used for
the same project where warranted. In particular, workspaces may cut across the divisions
imposed by the experimental databases to permit flexible modes of cooperation among
programmers.

We begin describing the problems of change management during software maintenance.
We present Infuse’s automated support for enforced and voluntary cooperation and
explain how Infuse automates change management using existing programming tools.
We compare Infuse to related systems, none of which support an enforced model of
cooperation. We conclude by listing our contributions.

2. Changes to Software Systems

Cooperation is required when source code changes to a software system involve the
efforts of multiple programmers. In a medium-to-large software project (involving at
least 100,000 lines of source code), there are several reasons why maintenance activities
are rarely carried out by a single programmer. The sheer volume of the effort may be
prohibitive. There may not be any single programmer with knowledge about the modules
and the system sufficient to make the changes correctly and rapidly. There may be
administrative considerations that make it inappropriate for one programmer from one
managerial unit to modify the modules assigned to another programmer reporting to a
different manager.

Instead, a group of programmers normally cooperates on a change that involves several
modules, particularly a change that cuts across subsystem boundaries. When changes are
being made in several modules, it is necessary for the changes to be consistent with each
other. The changes must be syntactically consistent [15], meaning that the interfaces
between the modules must be correct and that the modules can compile and link
successfully. Consider the case where module M exports procedure p, where procedure p
has two formal parameters of types t1 and t2. Module N imports procedure p from
module M and defines procedure q that calls procedure p; the call is made with two
arguments, of types t1 and t2.

The change to this software system includes modifying procedure p to add a third
parameter, of type t3. This change requires that module N also be changed, so procedure
q calls p with a third argument, which must be of type t3. It is necessary for the
programmer responsible for module M to communicate this change to the programmer
responsible for module N and for the two programmers to coordinate their changes and
make sure they are consistent.

When changes are made in several modules, it is also necessary for the changes to be
semantically consistent [9]. Consider the case where the new parameter of type t3 is a
pointer to a buffer. Procedure p assumes that procedure q has allocated space for this
buffer before calling p. If this has not been done, then procedure p will cause a run-time



error when it attempts to write into the buffer implied by its third argument.
Assumptions of this kind are not normally reflected in the interfaces among modules, and
thus cannot be detected by the compiler linker. It is therefore particularly crucial for the
programmers involved to communicate their assumptions and cooperate on making the
desired changes in the software system.

Infuse provides the basis for automating two kinds of consistency checking, change
simulation and change propagation; both may be applied with either syntactic or
semantic consistency. A programmer may request change simulation to check for any
interface errors [10] introduced by his most recent changes without immediately
notifying other programmers of these changes. This permits a programmer to reconsider
a change that has undesirable effects on other modules. Change simulation may be
performed with respect to only the modules in the programmer’s workspace, with respect
to only the modules in the programmer’s experimental database, or with respect to a
baseline version of the software system.

Infuse automatically performs change propagation under certain circumstances,
discussed below. The tool checks for interface errors among the modules in a workspace
or among the modules in an experimental database. For each interface error found,
Infuse notifies the programmers assigned to the relevant modules and informs them of the
change(s) that introduced the error.

There are three important distinctions between change simulation and change
propagation. The first is that Infuse propagates changes automatically while it simulates
changes only in response to a programmer’s request. The second difference is that Infuse
can simulate any change, but propagates only ‘committed’ changes. The third distinction
is in the way that Infuse reports inconsistencies. It reports errors found during change
propagation to every programmer whose module was involved in the inconsistency; this
permits the programmers to negotiate further changes with full knowledge of any
problem areas. In contrast, it reports errors found during change simulation only to the
individual programmer who initiated the analysis; this enables the programmer to back
out of uncommitted but troublesome changes without entering into negotiation with other
programmers.

3. Experimental Databases

An experimental database contains a collection of reserved modules. Modules are placed
in a particular experimental database according to some criteria that partition the
collection of modules involved in a change. This normally occurs when a planned
change (or set of planned changes) in the software system requires coordinated changes
in a set of modules. The programmers responsible for these modules are automatically
associated with the experimental database.

Experimental databases are hierarchical. The top-level experimental database consists of



a virtual copy of the entire software system. The second level experimental database
consists of only those modules involved in the change. This database is then partitioned
into child experimental databases, where disjoint subsets of the modules are placed in
each child. The partitioning is repeated recursively until the experimental database at
each leaf contains one or more modules assigned to the same programmer. We refer to a
leaf as a ‘singleton’ experimental database. An example hierarchy (without the base
level) is illustrated in Figure 1.
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This software system consists of modules A through Z, so the top-level experimental
database (not shown) contains each of these 26 modules. Modules A through H are
involved in the change, so the second-level experimental database contains copies of A,
B, C, D, E, F, G and H. The third level of the hierarchy consists of three experimental
databases; the first contains A and B, the second C, D, E and F, and the third G and H.
The second of these experimental databases is further subdivided into two experimental
databases at the next level. The leaves of the hierarchy each contain a single module.

Figure 1: Hierarchy of Experimental Databases

The hierarchy of experimental databases may be partitioned manually to reflect the
management hierarchy of the software maintenance team. Another possibility is to
partition, again manually, according to the subsystem organization of the target software
system. However, both alternatives often result in higher communication and
propagation costs than other methods of partitioning that reflect the interconnections
among the modules.

We have developed an approach to partitioning based on the strengths of the syntactic
and semantic dependencies among the modules [11]. This approach attempts to
minimize the communication and propagation costs, and has the additional advantage
that it can be automated. An optimal partitioning would place together in the same
subtree of experimental databases those modules whose new changes will interact most
strongly. Unfortunately, it is not possible to determine an optimal partitioning a priori



because the full costs cannot be determined until after the changes have been completed.
We propose strengths of dependencies as a good approximation.

The partitioning tool must be embedded within Infuse. However, it is not necessary for
an experimental database to interact with the tools used by the programmers to modify
their modules. Infuse places no requirements of any sort on these tools. When the
programmer completes the changes to his module (or small set of modules), the
programmer must give the deposit command to notify the experimental database that his
part of the overall change is complete.

Infuse invokes an analysis tool to determine whether the module is self-consistent. Self-
consistency within a module means that no errors are detected during lexical analysis or
parsing and that any symbols that are both defined and used internally are used correctly
with respect to their definitions. For example, the front-end of a compiler is easily
modified to check syntactic consistency only with respect to a particular module,
ignoring consistency with other modules. The deposit of a singleton experimental
database is not permitted unless the module is self-consistent.

After all the modules in an experimental database have been deposited, Infuse invokes an
analysis tool to propagate changes. The tool checks that the modules in the database are
consistent among themselves. Intermodule consistency requires that any symbol defined
by one module and used by another is used correctly with respect to its definition.
Modules outside the experimental database are not considered. It is not difficult to
include external modules in the analysis, but this leads to an information overload and
communication difficulties as many error messages are generated due to temporary
inconsistencies and other transient conditions. The goal of experimental databases is to
limit change propagation to a manageable level.

Infuse checks for three possible results. The first is that the modules are consistent;
Infuse automatically deposits the entire experimental database into its parent
experimental database. Once all child experimental databases have been deposited,
Infuse then analyzes the parent experimental database as it analyzed each of the children.

The second possibility is that the modules are consistent, but some of the modules in the
experimental database must be recompiled due to changes in imported modules. Infuse
marks these modules for recompilation, and then deposits the entire experimental
database into the parent database as above. It is generally best that recompilation not
proceed immediately, since inconsistencies involving these modules may be detected at a
higher level of the hierarchy.

The third possibility is that the modules are inconsistent; Infuse informs all the
programmers associated with the experimental database about the conflicts. It provides
precise information about the localized conflicts for each affected module and
appropriate instructions for resolving the conflicts. The programmers or their managers
must now negotiate changes to their modules that will resolve the conflict. Infuse does
not permit a deposit of the experimental database into its parent until the modules in the



experimental database are consistent among themselves.

The relevant programmers choose some subset (perhaps all) of the conflicting modules
for an additional set of changes to remove the inconsistencies. This group of modules is
then recursively partitioned in the same manner as the original partition into a hierarchy
of experimental databases. The root of this new hierarchy is the experimental database in
which the inconsistencies were detected, so this new partitioning does not affect the rest
of the original hierarchy. This process is illustrated in Figures 2 and 3.

A B C D E F G H

C D E FA B G H
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Modules D, E and F were changed and deposited into the experimental database
containing only D, E and F. Infuse invoked the analysis tool, which determined that
there were no inconsistencies among these three modules. The experimental database
was then deposited into its parent, which contains C, D, E and F. Module C had also
been changed and deposited into this experimental database.

Figure 2: Deposit into Parent Experimental Databases

Then the resolution process repeats as if there had been no previous resolution. The
modules in the leaf experimental databases are modified again, and deposited again into
their parent. If there are new conflicts, or if previously detected inconsistencies have not
been correctly resolved, then additional negotiation and change must follow.

When part of a hierarchy is deposited, inconsistencies may be detected, requiring
repartitioning of the subhierarchy. We call this the ‘yo-yo’ effect. When the yo-yo effect
occurs frequently, particularly within the same portion of the hierarchy, this usually
reflects poor communication or a lack of cooperation among the participating
programmers. Infuse can be set up to monitor instances of this problem and to
notify appropriate managers of the problem.

3.1 Tool Integration and Change Simulation

We have discussed how Infuse operates when the programming tools are not integrated
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Infuse again invoked the analysis tool, finding a conflict between modules C and E and
between modules C and F. Subsequently, the programmers chose to modify C and E (but
not D or F) to remove the inconsistency. Infuse creates a new child experimental
database containing C and E, which is further partitioned so the leaves of the hierarchy
again contain a single module.

Figure 3: Repartitioning into Subhierarchy of Experimental Databases

into Infuse, and each programmer must explicitly notify Infuse when his changes are
complete by issuing the deposit command. This works well for change propagation, but
difficulties arise when we apply it to change simulation. The goal of simulating changes
is to inform the programmer of any conflicts caused by his changes before the changes
have been deposited, while the programmer is still in the context where the change is
made. To do this effectively, each modification tool must be integrated into Infuse so
that the simulate command can be invoked from within the tool.

This is a rudimentary level of ‘integration’, but it has the significant advantage over non-
integration that the programmer can try a small change and immediately find out how it
affects the modules in the parent experimental database. Without such integration, the
programmer has to leave the modification tool and perhaps sacrifice its internal state to
obtain early notification of any problems.

If we add a further level of integration, then Infuse provides more extensive information
regarding any problems. For example, Infuse highlights any errors detected in the part of
the source code currently being displayed by the modification tool; if this tool supports
multiple windows, Infuse pops up a window to display the conflicting source code from
other modules. This makes it easier for a programmer to decide whether he wants to
commit the proposed change and, if so, to inform other programmers of the effects on
their modules.



4. Workspaces

Integration makes it possible for Infuse to inform programmers immediately of conflicts
between their module and other modules in the parent experimental database, but it does
not help programmers keep track of simultaneous changes being made to other modules.
Sometimes it is important for a small subset of the programmers involved in a large
change to get immediate feedback about the interactions among the changes to their
modules. In these cases, it is appropriate to propagate changes at agreed intervals, such
as on demand or after each checkpoint, rather than waiting until all of the modules have
been deposited. However, immediately propagating changes does not solve the whole
problem, because partitioning does not necessarily place these modules in the same
experimental database. These issues motivated the development of workspaces, which
support interactive consistency checking among selected modules. Workspaces can cut
across the partitioning of the hierarchy of experimental databases, or can be used alone to
support changes involving a small group of programmers.

Like an experimental database, a workspace contains a collection of modules. In general,
the modules have been placed in the workspace because the programmers responsible for
the modules have decided to coordinate their changes to the software system. Figure 4
shows a workspace that cuts across the divisions imposed by experimental databases.

FED

A B C D E F G H

G HA B C D E F

A B C D E F G H

The most crucial part of the change to the software system involves modules A, D and E,
so the changes to these modules must be carefully coordinated. Thus a workspace is
defined that contains these three modules and provides the three programmers with
immediate feedback about interactions among the changes to their modules.

________________________________________________________________________

Figure 4: A Workspace

Unlike an experimental database, the workspace must interact with the tools used by the
programmers to modify their modules. The tools may include text editors, syntax-



directed editors, program transformation systems, etc. Infuse does not assume any
particular technology for making changes in modules. Each programmer can use his
favorite collection of tools, or use the standard collection provided at his site, and there is
no need for the modules in the workspace to be modified using the same tools, as long as
all these tools are appropriately integrated with Infuse.

The minimal requirement is that each tool notify the workspace when a modification
session terminates; this involves a minor extension to each tool used within Infuse.
Many such ‘sessions’ may be required to complete a change in a module. For example,
the end of a session may correspond to a checkpoint, and editing of the same module may
continue immediately. A session may involve editing the entire module, or a subunit of
the module such as a procedure.

When each modification session ends (or on demand), Infuse invokes an analysis tool to
propagate changes. It determines the syntactic and/or semantic changes that have taken
place. For example, a theorem prover is an possible tool for semantic analysis. In
particular, the Inscape environment [9, 12] provides a notation for specifying the
preconditions, postconditions and obligations of each procedure and automatically
determines whether all preconditions and obligations have been satisfied by previous and
subsequence postconditions, respectively.

Infuse checks for three possibilities. The first is that changes in the module do not affect
any other modules in the workspace. In this case, the workspace does nothing except
monitor further changes in the module.

The second is that the changes in the module require recompilation of other modules
resident in the workspace, but do not require the source code of any of these other
modules to be modified. When this occurs, the necessary recompilation is noted for later.
There is no need to inform the programmers of such requirements, since Infuse performs
these recompilations automatically.

The third possibility is that the changes in the module require source modifications in one
or more of the other modules resident in the workspace. This happens when there is a
syntactic and/or semantic inconsistency between the changed module and each module
that now requires a change. In this case, both the programmer who made the change and
the programmer responsible for the affected module are immediately notified of the
conflict. Since Infuse propagates changes frequently, it is particularly important to keep
the number of modules in a workspace small to restrict the error messages and resulting
negotiations among programmers to a manageable level.

4.1 Integration of Analysis Tools

Infuse is most useful when there is a high level of integration between it and the
modification tools used by the programmers. For example, notification of new interface
errors can take several forms. At the minimal level of integration, Infuse relies on



electronic mail messages or simply dumps error messages on the participating
programmers’ screens. At higher levels of integration, Infuse provides immediate visual
feedback and displays the relevant portions of all modules involved in each conflict,
enabling the programmers to negotiate changes to their modules as soon as possible.

In any case, the level of detail included in the notification is dependent on the capabilities
of the analysis tool(s) used and the level of integration between Infuse and the
analyzer(s). The more detail that is provided, the easier it will be for the participating
programmers to negotiate changes without confusion. Integration requires that the
minimal analysis tool match error messages with textual lines of source code. When the
modification tool is a structure editor [4, 13] that shares its internal representation with
the analysis tool, this can be improved to attach error messages to portions of the abstract
syntax tree.

If the analysis tool is moderately intelligent, in the sense of the intelligent assistants
described by Winograd [16], it might suggest how to to fix the problems.

Certain difficulties arise when a conflicting module is involved in several distinct
coordinated changes, and thus the module is resident in several overlapping workspaces.
Changes made to the other modules in one workspace must not leak to the other modules
in other workspaces through the error messages regarding the common module. Infuse
prevents this problem by propagating changes to only one workspace at a time. This
problem does not arise for change simulation because only the requesting programmer
receives the error messages.

5. Related Work

The following tools also propagate changes among modules. However, none support the
enforced model of cooperation among programmers necessary for large maintenance
projects, since they permit programmers to modify source code at will, in some cases
requiring that no other programmer is modifying the same module at the same time.
Only one provides an automated forum for change negotiation among programmers.

Make When requested, the Unix Make tool [3] rebuilds the entire
software system. It invokes the tools specified in the ‘makefile’ on
changed files and all files that depend on changed files. Make is
normally used to recompile and relink.

Build The Unix Build tool [2] is an extension to Make that permits
various users to have different views of the target software system.
A ‘viewpath’ defines the sequence of directories searched by Make
to find the files named in the makefile. Viewpaths are similar to
the underlying support for experimental databases.



Cedar The Cedar System Modeller [7] combines an advanced version of
the Make tool with version control. It invokes the tools on
selected versions of modules. A distinguished programmer called
the ‘Release Master’ is informed of syntactic interface errors
between modules; the Release Master is responsible for
communicating with the programmers responsible for these
modules.

DSEE The Apollo Domain Software Engineering Environment [8] also
combines Make-like facilities with version control. In addition,
DSEE provides a monitoring mechanism that allows programmers
and managers to request that they be notified when selected
modules are changed.

Masterscope Interlisp’s Masterscope tool [14] automatically maintains cross-
referencing information among program units. It approximates
change simulation by answering queries about syntactic
dependencies among program units.

SVCE The Gandalf System Version Control Environment [5] performs
incremental consistency checking across the modules in its
database and notifies the programmer of errors as soon as they
occur. The consistency checking is limited to detecting syntactic
interface errors. SVCE supports multiple programmers working in
sequence, but does not handle simultaneous changes.

Smile The Smile programming environment [4, 6] introduced the notion
of an experimental database, but does not support a hierarchy of
experimental databases and does not automate partitioning. It both
simulates and propagates changes at the syntactic level, and does
not permit a deposit of an experimental database until its modules
are syntactically consistent among themselves and with the other
modules in the main database. However, Smile restricts each
experimental database to a single programmer, preventing multiple
programmers from cooperating on changes. We have used Smile
extensively, and have drawn on that experience in developing
Infuse.

6. Conclusions

The primary contributions of this research in software engineering environments are:

• Change management that supports the specific problems of large numbers of
programmers maintaining large systems.

• Integration with facilities specific to small group cooperation within large projects.
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