
Industrial Strength Software Development Environments

Dewayne E. Perry
AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract

‘‘Industrial strength’’ software development environments (SDEs) must provide facilities
to address three essential properties of multi-developer software systems: evolution,
complexity and scale. It is my contention that in order to be an industrial strength SDE,
an environment must support at least a city model environment. Moreover, SDEs must
include such high level policies as supporting cooperation and communication,
supporting a unified process and product, providing multiple means of expression,
supporting inter- and intraconnections, managing the change process and managing the
multiplicity of versions. Underlying the implementation of these policies are three
themes: developer-machine symbiosis in which the machine becomes an active partner in
system development and evolution; formalization of the development/evolution process
so that we can reason about the process and automate its support; and finally,
formalization of the software product so that we can reason about it and automate its
support.

Invited Keynote Presentation
for the

Software Engineering Track
11th World Computer Congress IFIP ’89

August 28 - September 1, 1989
San Francisco CA



1. Introduction

A few caveats are in order before getting to the heart of this paper. I am not concerned
about describing the details of current environments that I consider to be ‘‘industrial
strength’’ — you will see below that I consider none to be available today — or about
how to build them. Rather, this is a visionary discussion about the problems software
development environments (SDEs) must solve, and the facilities they must provide, in
order for them to be considered ‘‘industrial strength’’.

The problem I am concerned about is the automation and support of the technical
development of software systems by multiple developers. For this reason, I make a
distinction between programming environments (PEs), software development
environments, and software engineering environments (SEEs). Programming
environments are those sets of tools used by an individual programmer to construct his or
her program. I consider PEs only indirectly because the tools provided by them are
included in software development environments. I do not address the problems of
software engineering environments (which include the tools provided by SDEs) primarily
to limit the scope of this paper. The discussion of SDEs exposes what I consider to be
important issues that are equally applicable to SEEs, and, in some cases, compounded by
the problems addressed in SEEs.

In the sections that follow, I first delineate what I consider to be some of the essential
problems in multi-person development of software systems and then discuss each
problem individually. Next I describe the implications of these problems for SDEs and
consider what policies must be supported by SDEs to solve them. I conclude by
considering some underlying themes that are intertwined in these solutions, themes that
are necessary for ‘‘industrial strength’’ SDEs.

2. Some Essential problems

Brooks in ‘‘No Silver Bullet: . . .’’ [1] distinguishes between essential and accidental
properties of building software systems. I would like to discuss several interrelated
problems that are an essential part of the problem in the multi-person development of
software systems:

• evolution,

• complexity, and

• scale.

These problems of evolution, complexity and scale are, in various ways, interdependent.
For example, the problems of complexity are exacerbated by the multiplicity of
interactions that accompany increased scale; the problems of complexity are heightened
by the fact that the system may evolve in several directions at once; the problems of scale
are made more difficult by complex and evolving systems; and the problems of evolution
are compounded by complex systems changed by many people simultaneously.



2.1 Evolution

Software changes in a variety of ways: errors are corrected; data structures and
algorithms are changed to improve space or time performance; machine-dependent parts
are changed to port a system to new hardware; extensions are made to provide new
features; and parts are used and reused to create new applications. Further, all these
activities may occur concurrently with multiple-release, multiple-machine systems. (For
seminal work on system evolution, see Lehman and Belady [10]).

The notion of ‘‘getting it right the first time’’, while perhaps laudable in reducing the
iterations of fixing bugs and improving performance, has little to do with the problems of
portation, iterative enhancement, or modification for new uses. This homily exhibits a
lack of recognition that an important, essential feature of software systems is that they
evolve.

More important still, evolution is an essential fact at the micro-level of software
development as well the macro-level. Requirements evolve from vague beginnings,
through iterations with the customer, to a firm set of (one hopes) clear specifications.
Architectures evolve from the constraints imposed by the requirements and from various
other considerations. Designs evolve, beginning with requirements and architectural
constraints, into detailed descriptions. And, code itself evolves as the system is built and
tested. Thus, the common wisdom that development is followed by maintenance is not
supported by the reality of evolving systems. What is traditionally claimed to be a part
of the maintenance process (in all its variety) occurs much earlier in the development
process.

Further, the evolution at each point in the process causes iteration back to previous levels
(or phases). The neat, tidy separation of phases found in the waterfall model [20], while
useful at a high level of abstraction, poorly reflects the reality of development. The
evolutionary aspects of development — and hence, redevelopment and reuse — cross
both the micro- and macro-levels of the development process as well as the software
system.

Hence, what is needed in ‘‘industrial strength’’ SDEs is support for an evolutionary
paradigm that is radically different from paradigms that are supported today.

2.2 Complexity

Brooks states that ‘‘Software entities are more complex for their size than perhaps any
other human construct . . . ’’ Wulf, London and Shaw [28] make an even stronger claim:
‘‘large programs, even not-so-large programs, are among the most complex creations of
the human mind’’. This complexity arises from several distinct sources.

Part of the complexity arises from the difficulty in comprehending the intricacies of
algorithms and data structures, particularly after they have been heavily optimized.
Understanding these creations is often like understanding long and convoluted
philosophical arguments: you often have to work through them carefully each time you
encounter them in order to convince yourself that they are indeed correct (if in fact they
are). It is not an uncommon occurrence for the creator of a piece of software to have
difficulty reconstructing the intricate lines of reasoning that led to its current state. The



difficulty for someone other than the creator is magnified accordingly. When this
intricate software evolves, it is often an exceedingly difficult and error prone process,
even for the original creator.

Part of the complexity arises from the sheer wealth, or volume, of detail. This is where
the problems of complexity and scale interact most directly. Compounding this sense of
complexity is the fact that a single person is incapable of understanding a large system.
Whatever handles we had on combatting the problems of innate intricacy do not apply
here. One of the reasons for our lack of ability to comprehend large systems, is (as
Brooks states) the fact that we do not construct large software systems by replicating a
small set of building components as we do when constructing buildings or computers;
instead, we construct large software systems by multiplying the number of distinct
components. The difficulty in understanding the wealth of detail is compounded because
the number of interactions among components grows non-linearly with the number of
components. These non-linearly growing interactions make it extremely difficult to keep
separate, but interacting and interlocking, pieces of the system consistent with each other.

In both cases above, part of the complexity arises because a large amount of the
information needed to understand the intricacies and the wealth of detail is only implicit
in the representations that we use. We have syntactic representations that reveal only a
part of the immense detail that is actually present. Attached to these syntactic
representations — the names, the structures, language statements, groups of names and
statements — are meanings that are not visibly expressed.

These sources of complexity are compounded by the iterative and concurrent nature of
building and evolving software systems: the intricate details change, the wealth of detail
changes, and the underlying meaning and intent changes; often these changes occur
without our noticing them. It is clear that we need tools in our SDEs that help us manage
the intricacy and wealth of detail and their interactions, as well as tools that expose the
underlying meanings of the details.

2.3 Scale

The problems of scale manifest themselves in two dimensions: the size of the software
and the number of people building that software. We have already alluded to the
problems of scale in the software itself. These problems are compounded when the
number of people increases as well. Not only does the number of interactions among
components of the system multiply, but the number of interactions among the people
multiplies as well.

The thought of having only the most productive developers work on large systems, and
thus reduce the problems of programming-in-the-many to programming-in-the-few, is a
seductive one. Having the best people possible is clearly a goal that all projects strive
for. However, the reality is that there are not enough of the best people to go around.
Thus we must consider that one aspect of the problem of scale is the use of ordinary
developers as a significant contributors in building systems.

Another strategy for reducing the numbers of programmers is that of making them more
productive — for example by using higher-level languages, by reusing previously written



code, etc. Obviously, this is a laudable strategy. However, we usually use these
productivity measures to shorten development time or to build larger systems instead of
reducing staff; that is, we seem to be in the chronic state of trying to build rocks we can’t
lift.

Thus, the problems of scale must be faced and provided for in an industrial strength SDE.
Facilities must be provided for managing, reducing, and enhancing the interactions
among developers as well as making them individually more productive.

3. Implications for SDEs

These three essential properties of developing software systems have a number of
implications for the kinds of features that an industrial strength SDE must have. In order
to discuss these features in a uniform way, I will use a general model of SDEs introduced
by Perry and Kaiser [16]; the model defines an SDE to consist of three interrelated
components: a set of policies, a set of mechanisms and a set of structures. Policies are
rules, guidelines and strategies imposed on the developer by the environment;
mechanisms are the visible and underlying tools and tool fragments; and structures are
the underlying objects and object aggregates on which the mechanisms operate.
Mechanisms and structures together support the desired policies.

In the discussion that follows, I concentrate on the policies that are important in an
industrial strength SDE; I also indicate what kinds of mechanisms and structures might
be needed to support those policies.

Perry and Kaiser further delineated four classes of models according to a sociological
metaphor that emphasizes the effects of scale on SDEs. These classes are points on a
continuum of possible models, but they are selected for their suggestiveness about the
different kinds of problems found in projects of various sizes. These four classes are the
individual, the family, the city and the state models (where each larger class incorporates
the smaller). The individual model represents a set of tools to be used by the individual
developer who is working in isolation and concentrating on the construction of programs.
The family models represents those tools that, in addition, facilitate the interactions of
small groups of programmers working together. These tools assume that the members of
the project act in reasonable ways and that only a minimal amount of coordination is
needed (usually supplied by version management facilities). The city model represents
those environments that support larger sized groups (say 20 or more) where the degrees
of freedom allowed in the family model would result in anarchy. A richer set of policies
is needed for supporting the cooperation needed in this model of environments. The
state model supports a (possibly heterogeneous) set of SDEs (consisting of one or more
of the other models) and administers a uniform set of policies across these environments
— that is, a state model emphasizes a commonality across environments.

It is my contention that industrial strength SDEs must support at least a city model
environment to address the problems of evolution, complexity and scale. Moreover, the
following high level policies are necessary in order to address these problems:

• support cooperation and communication,



• support a unified process,

• provide a unified product,

• provide multiple means of expression,

• support interconnections and intraconnections,

• manage the change process, and

• manage the multiplicity of versions.

I will discuss each of these in turn by first considering the current support in SDEs for
these policies, and then indicating some of the subpolicies, with their attendant
mechanisms and structures, needed to support these high-level policies. As we shall see,
the support of these individual policies interact in many interesting ways.

3.1 Cooperation and Communication

The SDEs at the current state of the art can support the individual and family model
environments. Obviously, no cooperation or communication mechanisms are needed for
the individual environments. Only relatively simple mechanisms are needed in a family
situation where both cooperation and communication function at an informal level. For
example, SCCS [19] or RCS [23] provide minimal coordination among developers in
UNIX environments; electronic mail is used to some advantage within DSEE [10] to
support communication among project developers about various important project
events.

However, a much richer set of policies and their supporting mechanisms and structures
are needed to provide an industrial strength environment. Because the interactions of
larger groups of people are more complex, the rules and guidelines must be
correspondingly more comprehensive as well. So far, very little work has been done in
providing automated support for cooperation policies or in providing ways of managing
communication among developers.

Indications of what these policies might be are provided by projects such as Infuse [13, 8]
and IStar [4]. Infuse supports policies for both enforced cooperation, by means of
hierarchical experimental databases which define the boundaries and the form of enforced
cooperation, and voluntary cooperation, by means of workspaces which enable
developers to form arbitrary alliances for cooperative purposes. IStar provides a
contractual model which defines the boundaries of interactions between contractor and
contractee in developing pieces of a system. The interactions are formalized as to what is
required in the contract and how that contract is to be satisfied. Cooperation is
circumscribed by these contracts.

In both Infuse and IStar, the policies are ‘‘hard-wired’’ into the environments. That is,
the models of cooperation are pre-determined and supported (or enforced) by the
environment. At a relatively low level, it is impossible to implement mechanisms and
structures without implying some specific low level policy. However, there is a higher
level of policy making that must be provided to the individual system development
methodologists: they need a means of specifying the particular policies of cooperation



and communication appropriate to their particular process. I will consider this problem
in further detail in the ‘‘underlying threads’’ section.

While some work has been done in supporting cooperation, very little has been done in
facilitating communication beyond the use of electronic mail. This is an area that needs
innovative exploration.

Equally important to supporting and making communication more effective is finding
ways to reduce the amount of communication that must take place — an important way
of lessening the multiplicative effect of scale. As formalization of the process provides a
means of codifying the policies of cooperation, so formalizing the product provides a
means of focusing some important aspects of communication among the developers. The
formal product becomes the medium of communication and effectively reduces a many-
to-many communication problem to a many-to-one communication problem. Such an
approach focuses communication in a beneficial direction while reducing the amount of
interpersonal communication that currently exists.

Industrial strength SDEs will provide policies, mechanisms and structures to supply
various forms of cooperation and communication.

3.2 Unified Process

Currently, tool support in SDEs focuses on the coding, building and testing phases of the
system life-cycle. We have elaborate policies, with their attendant mechanisms and
structures, at very low levels of detail for these parts of the development process.

The earlier parts of the cycle — requirements, architecture, and design — are supported
only in an ad hoc way, usually by documentation tools. While we are now beginning to
see design tools on the market, due primarily to the advent of graphic terminals, we still
have a long way to go before these tools are integrated into the life-cycle supported by
integrated SDEs.

It is extremely tempting to think of the transition from one phase of the life-cycle to
another as that of refinement. To some extent, the process of moving from requirements
to architecture to design to code is one of refinement. Certainly, each phase adds more
constraints on the solution and thus reduces the solution space. However, there are
discontinuities encountered in the process as well as non-linear relationships between the
components at one level and those of the next. For example, moving from an expression
of what must be provided to how it is provided is both discontinuous and non-linear.
Certainly non-functional requirements have these problems; I claim that functional
requirements also have them.

Thus, what we need to support the entire life-cycle are policies and their supporting
mechanisms and structures that are endemic to each activity and that support all the
activities needed in the development of software systems.

3.3 Unified Product

As current process support in SDEs is centered around coding, so current product support
in the development process is centered around the code. While we all recognize that
there is more to the actual product that just the code, we still tend to emphasize this



specific part of the product to the detriment of the other parts. Requirements merely
prime the pump; architecture and design get us to the point where we can at last begin to
produce code; and so on. Code is the only thing that is kept up-to-date, obviously
because it has to be. The other parts of the product are generally disregarded once they
have served their initial function.

This approach to the system product has to change because the costs of doing business
this way are too high. Unifying the various products of the development process into a
multi-faceted product serves a number of very important functions. Of course, the unified
process should have a policy that ascertains the consistency among the components and
guarantees their currency. First, an integrated, timely product of this kind is of
inestimable value in reducing the discovery costs that are incurred every time a new
person becomes part of the project or when changes and additions are made to the
product. Second, this unified product serves as the basis for negotiating changes to the
product at the appropriate level, as well as assessing the costs and effects of those
changes. Third, we have already mentioned the use of formality in reducing the paths of
communication; a unified product provides similar advantages.

The problems of evolution, complexity and scale are currently compounded by the
inhibiting underbrush (cf. Brooks [1]) generated with inaccurate, inadequate, incorrect
and out-of-date components of the development product. An industrial strength
environment will remove that underbrush.

3.4 Multiple-Expression

It is implicit in the typical mono-lingual environments and cultures that exist today that
insufficient consideration (or, as I suspect in most cases, no consideration) is given to the
effect of language on the development software systems. Samuel Johnson’s maxim
‘‘language is the dress of thought’’ [7] catches some of the insight about language and
expression. However, I think that Carlyle [3] captures the essence of the importance of
our means of expression when he states ‘‘language is called the garment of thought,
rather it should be called the flesh garment, the body, of thought’’. The means of
expression should reveal the body that we intend to express; all too often it obscures our
intent instead because of its inappropriateness.

The fact that we use a language like FORTRAN to do character processing or LISP to do
numeric crunching shows how little we pay attention to the tools of expression that we
have at our disposal. We should use the best means of expression for the particular
problem. At a minimum, this argues for a multi-lingual SDE in which we can build
multi-lingual systems.

The preceding observation about the inappropriate use of tools is concerned only about
our coding language. How much more apt are these considerations for the various other
parts of the software product. We may need a variety of means of expression for each of
these parts. For example, requirements must provide both the contractor (customer, or
user) and the implementers with their views about what the system is supposed to do.
The means of expression for one are very different from those for the other. The users
need the requirement expressed in non-technical terms, perhaps augmented by animation
or by usable prototypes; the implementers need clear, unambiguous, precise and accurate



technical descriptions of the capabilities of the system to be built expressed in system
building terms, not user’s terms. These two distinct views obviously must be consistent
with each other. Further, the problems encountered in finding the appropriate expression
of these views may be compounded by the need for more than one mode of expression
(as we argued for above in the actual coding of different problems). The appropriateness
of a mode of expression may vary from one phase to the next: at one point the most
useful expression may be textual rather than graphical; it may be formal rather than
informal; or static rather than dynamic.

The need for multiple means of expression for each part of the product is complicated by
the fact that each part requires its own mode of expression that may be distinct from that
of the others. The means of expression for requirements are very different from that of
architecture, especially that part of requirements that must be understood by the customer
or user. The same relation holds true for expressing architecture and design.

One further comment about our means of expression. What Wittgenstein states in
Tractatus Logico-Philosophicus [25] is applicable here: ‘‘the limits of my language mean
the limits of my world’’. Equally important to expressivity is the limitation of that
expressiveness. We want to rule out ambiguous, unclear expression as much as possible.
While we cannot rule out poor or ambiguous thought, we can try to make all ill-thought
expressions more readily apparent or perceivable as such. The use of formal languages
for each of the components in a software product is a fruitful way of bringing this about.

Intuitively, an industrial strength SDE providing appropriate and limited means of
expression should have a beneficial affect on all aspects of complexity.

3.5 Interconnections and Intraconnections

Providing multiple-expressions for the various components in a unified software product
and supporting them in an SDE are necessary, but multiple means of expression by
themselves are not sufficient to assist adequately in the iterative, evolutionary software
development process. The various components in the product need to be interconnected
— the dependencies between successive components need to made explicit. Further,
each component in the product needs to be intraconnected — the dependencies within
each component need to be made explicit.

In my paper, ‘‘Software Interconnection Models’’ [15], I distinguished three models of
software interconnections: the unit model, the syntactic model, and the semantic model.
The unit model is very useful in capturing relatively gross dependencies among various
units in a component — for example, between the source files needed to build a system.
Useful tools abound that make very good use of this large-grained kind of information,
particularly that support the coding, building and testing parts of the process. The
syntactic model is even more useful in capturing dependencies because it concentrates on
the syntactic objects that we build our systems with — the model provides a finer grain
of dependency. Various analysis tools (such as data-flow analysis tools, static-semantics
analysis tools, etc.) produce very useful results based on these syntactic dependencies.
The primary problem with both of these models is that there is no information about why
these dependencies exists. It was for this purpose that I introduced the semantic
interconnection model: to attach semantic information (expressing design intent) to



interface objects, and to use that semantic information expressed in those interface
objects to capture the implementers intent. The semantic interconnection model uses
unit, syntactic and predicate dependencies to express the interconnections among
interface and implementation objects in software systems.

The primary advantage offered by these kinds of inter- and intraconnections is
automation. The connections can be made automatically, and various kinds of analyses
can use the connections to provide better understanding about the relationships between
and among the components of a software system.

Unfortunately, where we have informal expressions, these kinds of techniques work only
poorly, if at all. Here interactive techniques that make explicit the connections among
informal components are needed. For example, Potts and Bruns in ‘‘Recording the
Reasons for Design Decisions’’ [19] use a hypertext mechanism to formalize the
connections between informal components in design documentation, such as design
decisions and justifications, alternate decisions and their rationales.

Thus, an industrial strength SDE must provide tools to manage both the formal and
informal inter- and intraconnections among the various parts of the software product.

3.6 The Change Process

The problems and interrelatedness of evolution, complexity and scale are most visible
when making changes to systems. As we have mentioned earlier, this change process
begins very early in the development process. The besetting problem in managing
changes stems from the fact that implications of changes usually extend in many
directions at once: within the current level of the system (for example, at the design
level), at the lower levels (for example, in the implementation) and at higher levels
(architecture and requirements). Certainly changes have effects on those parts of the
system that are dependent on the part being changed. Changing the design of a data
structure has a significant effect on all those parts of the design that depend on that
structure, and on all parts of the implementation that depend on it. Moreover, changes
may have upward effects as well. Some design changes have a profound effect on
architecture; some architectural changes may have serious effects on the requirements or
the satisfaction of those requirements.

What we need for industrial strength SDEs are tools that assist developers in making
changes, and that take an active, symbiotic part in the change process. The automation of
assistance in the change process is one of the primary benefits that accrues from having a
unified software product with both formal and informal inter- and intraconnections.
These connections can be used to aid in determining the implications, both upward and
downward (or forward and backward, depending on your orientation) from the level in
which the change is made.

The Inscape Environment [18] is a research experiment whose main concern is building
tools to support the construction and evolution of large systems. The tools are integrated
around the constructive use of formal module interface specifications with the
environment automating the semantic interconnections provided by those specifications
and their use in implementations. Inscape thus makes use of unit, syntactic, and semantic



interconnections to assist in the change process. As the system is constructed, the
environment automatically (or interactively where automation is not possible) records the
semantic dependencies of implementations on the interface objects as well as the
semantic dependencies on local objects. As a module implementation is built, Inscape
propagates an interface that is derived from the implementation. The propagated
interface can be compared against the specified interface to see how well the
implementation satisfies the specification. The first major benefit from this approach is
an automated link between the interface specifications (the interface design) and the
implementations using and generating those interfaces. The second benefit, and I think
the more important one, is that the implications of changes can be determined by the
environment by using the semantic interconnections established during system
construction. If a change is made to an interface specification, Inscape checks the various
places where that part of the interface is used to determine the effects of that change on
the implementation (for example, whether there was an effect at all, whether code may be
removed, or whether new code must be added) and reports it to the user. Conversely, if a
change is made in the implementation, Inscape determines how that affects both the
implementation and the enclosing interface. Thus, we have in Inscape an example of
using the syntactic and semantic inter- and intraconnections to provide assistance in
understanding the effects of change and automatically propagating the effects of those
changes.

Another important benefit of an approach such as Inscape’s semantic interconnections is
the explicitness of semantic dependencies. In the discussion on complexity above, I
mentioned that one of the contributing factors was the lack of visibility of important
detail. Semantic dependencies lurk beneath the visible detail of syntactic dependencies.
Here those details are made explicit and visible and we are thus able to take them into
consideration and reason about them as part of the evolution process.

An industrial strength SDE will provide automated assistance in managing the change
process as a necessary part of managing the problems of evolution, complexity and scale
and reducing their effects.

3.7 The Multiplicity of Versions

At the beginning of a system’s development, there is little problem in keeping track of
the various pieces of the system. The basic relationship between versions — that of
derivation — is sufficient to manage the system components. But as changes are made,
enhancements are installed, new uses are incurred, and multiple products are developed
in parallel, the problems in keeping track of the versions for different parts of the system
become significant. The basic relationship of derivation is still important because it
provides a history mechanism, but it is not sufficient to describe the more complex
relationships that result from these various strands of use and reuse.

Of the high-level policies that we have discussed, this one of managing a multiplicity of
versions has the most support in current SDEs, at least as far as managing the various
versions of source code are concerned. We have mechanisms and structures that provide
the basic relationship of derivation in two forms: the relationships of revision and variant
(that is, sequential and parallel versions). While these two relationships express some of



the intuition about the different kinds of relationships that exist among versions, they are
not sufficient to support one very important aspect of version and configuration
management: what happens when you use one version instead of another. The
integrating policy needed here is ‘‘support the concept of substitutability in building
composed versions of systems’’.

To accomplish this policy, we must be able to formalize the kinds of relationships that
occur between individual versions and among groups of versions, both independent of
their use and in the context of their use. In current mechanisms, the various kinds of
relationships among versions are determined in an ad hoc way — usually by developer
fiat. With the formalization of various products in the system, we can provide
formalization of these relationships so that they can be automatically determined.

Moreover, current mechanisms tend to concentrate on relationships of versions
independent of their use and ignore contextual relationships. Note that there is some
consideration of their use in the emphasis on resource dependence: Tichy [23] has a
notion of ‘‘upward compatibility’’ that depends upon the resources provided as well as
those depended upon. However, this concept falls short of what is needed in the tools to
manage the building of systems from components. Invariant [15], the version
management part of Inscape, defines several notions that are of importance here [15].
The first is that of version equivalence. Clearly anything that is equivalent is
substitutable. The second is that of version compatibility. Typically, only part of the
behavior of interface objects are used in a particular implementation. If one substitutes
objects that supply that required behavior, even if they are not equivalent, then they can
be considered compatible. Resource dependency can also be analyzed in such a way to
define version resource compatibility. Well-formed system compositions [5, 6] enable us
to determine whether all the resources are supplied when substituting one version for
another that is compatible in the sense that it supplies the required behavior, but unknown
as to whether it is resource compatible.

An extremely important aspect about groups of components that is not addressed in
current mechanisms, is that a number of components have a relationship as a whole. For
example, a set of components might together embody a particular change and must be
used together, even though individually they may appear to be equivalent versions of
other variants. What often distinguishes this set of components from other collections of
components is their dependence upon some shared resource or algorithm.

In order for an industrial-strength SDE to manage the multiple dimensions of the unified
system product, we will need a sufficiently rich set of versions relationships. Current
mechanisms must be extended to manage all components in the unified product, to
provide the kinds of version relationships that are endemic to each component in the
software product, and to support intercomponent relationships.

4. Conclusions — Underlying Themes

I have said very little about the actual mechanisms and structures needed for industrial
strength SDEs. Instead I have concentrated on the policies and high level features that
SDEs must have in order to be considered ‘‘industrial strength’’. However, there are



implications for these underlying mechanisms and structures — the policies and features
discussed form the requirements to be satisfied — and in many cases, there are still open
questions that must be solved. For example, the question of what kind of general
underlying structure is needed to support an industrial strength SDE is still an open
question. Current work is concentrated on ‘‘object bases’’ [22, 21]. Whatever its form,
it must be able to support the wide variety of components that comprise a system, the
multiple expressions of those objects, their inter- and intraconnections, and a wide
variety of relationships.

In the preceding section, a number of underlying themes have emerged as basic to the
variety of solutions needed to construct industrial strength SDEs. The most important of
these are the formalizations of both the process and the product. Somewhat orthogonal to
these two themes — and, in fact, enabled by them — is the increased participation of the
environment in the construction and evolution of software systems — the environment
working in symbiosis with the developers.

4.1 Developer— Machine Symbiosis

The basis for the increased synergy between developers and the environment is
automated analysis (where possible, interactive analysis where it is not possible) and
environmental management of the resulting dependencies and connections at unit,
syntactic, and semantic levels. By means of this analytical detail, industrial strength
SDEs will manage the process of evolution by determining the implications of changes
according to the various levels of interdependencies. Further, the understanding
incorporated in the environment of the various modes of expression will enable the
industrial strength SDE to aid the programmer in handling the various aspects of
complexity.

The projected results from this increased symbiosis are improved quality in the system
and increased productivity in the developers. Specific advantages include error
prevention, early error detection, and reduced discovery costs.

4.2 Formalization of the Process

One of the primary ingredients in supporting the policies discussed in the preceding
section and in providing the increased symbiosis between the developers and the
environment is the formalization of the software process. Formalization yields better
understanding of the process and provides a means of reasoning about that process. This
understanding and reasoning ability can then be incorporated into the environment and,
thus, provide better support for cooperation and increased effectiveness of
communication among developers, and support for the activities in creating and evolving
systems. Finally, a better understanding of the process — that is, a formalization of the
process — yields a better understanding of the product and aids our formalization of the
product as well.

Modeling the software process with formal process models [26, 4, 5, 11] and process
programs [12], and providing the underlying support to enact them is an important
direction of current research. Using process models, we formally define the particular
process that is appropriate to the product and to the project — we formally define the



policies that dictate how process activities are related, how developers interact with each
other (that is, how they cooperate and communicate), how developers interact with their
tools, and so forth.

Formalizing the process is a necessary first step towards industrial strength SDEs.

4.3 Formalization of the Product

Formalization of the product is of paramount importance in supporting a unified product,
in enabling the environment to determine the various inter- and intraconnections, in
supporting the environmental management of the evolution process, and in managing the
multiplicity of versions that accrue as the system evolves.

Formalization of the product is fundamental in exposing the otherwise implicit
complexity of software, reducing the increased communication as the scale of a project
increases, and improving the quality of the communication that occurs. The formalized
product serves (with the aid of the SDE) as the oracle about the product. Of course, this
can only happen if all the components in the product are consistent with each other and
current with respect to each other.

Thus, formalization of the product is another necessary step towards industrial strength
SDEs.

Acknowledgements

Tom Wetmore, Anil Pal, Mark Dowson, and Winston Royce provided insightful readings of this paper.

References

[1] Frederick P. Brooks, Jr. ‘‘No Silver Bullet: Essence and Accidents of Software Engineering’’,
Computer, 20:4 (April 1987), pages 10-20.

[2] Thomas Carlyle. Sartor Resartus, 1833-34. Chapter 11.

[3] Mark Dowson. ‘‘Integrated Project Support with IStar’’. IEEE Software, November 1987. pp 6-15.

[4] Mark Dowson, editor. Proceedings of the 3rd International Software Process Workshop: Iteration
in the Software Process, Breckenridge CO, November 1986. IEEE Computer Society, 1987.

[5] A. Nico Habermann and Dewayne E. Perry. Well Formed System Composition. Carnegie-Mellon
University, Technical Report CMU-CS-80-117. March 1980.

[6] A. Nico Habermann and Dewayne E. Perry. ‘‘System Composition and Version Control for Ada’’.
Symposium on Software Engineering Environments. Bonn, West Germany. June 16-20, 1980.
Published in Software Engineering Environments, edited by H. Huenke, North Holland, 1981, pp.
331-343.

[7] Samuel Johnson. Lives of the English Poets, ed. G. B. Hill, 1905. Volume I, ‘‘Cowley’’, p 58.

[8] Gail E. Kaiser and Dewayne E. Perry. ‘‘Workspaces and Experimental Databases: Automated
Support for Software Maintenance and Evolution’’. Conference on Software Maintenance — 1987,
Austin TX, September 1987. pp 108-114.

[9] David B. LeBlang and Robert P. Chase. ‘‘Computer-Aided Software Engineering in a Distributed
Workstation Environment’’. SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments Pittsburgh PA, April 1984. pp 104-112



[10] M. M. Lehman and L. A. Belady. Program Evolution. Processes of Software Change. APIC
Studies in Data Processing No. 27. London: Academic Press, 1985.

[11] M. M. Lehman. ‘‘Process Models, Process Programs, Programming Support’’. Proceedings of the
9th International Conference on Software Engineering, Monterey CA, March 1987. pp 14-16.

[12] Leon Osterweil. ‘‘Software Processes Are Software Too’’. Proceedings of the 9th International
Conference on Software Engineering, Monterey CA, March 1987. pp 2-13.

[13] Dewayne E. Perry and Gail E. Kaiser. Infuse: A Tool for Automatically Managing and
Coordinating Source Changes in Large Systems.’’ Proceedings of the 1987 ACM Computer
Science Conference, St. Louis MO, February 1987. pp 292-299.

[14] Dewayne E. Perry. ‘‘Software Interconnection Models.’’ Proceedings of the 9th International
Conference on Software Engineering, Monterey CA, March 1987. pp 61-69.

[15] Dewayne E. Perry. ‘‘Version Control in the Inscape Environment.’’ Proceedings of the 9th
International Conference on Software Engineering, Monterey CA, March 1987. pp 142-149.

[16] Dewayne E. Perry and Gail E. Kaiser. ‘‘Models of Software Development Environments.’’
Proceedings of the 10th International Conference on Software Engineering, Raffles City,
Singapore, April 1988. pp 60-68.

[17] Dewayne E. Perry. ‘‘The Inscape Environment.’’ Proceedings of the 11th International
Conference on Software Engineering, Pittsburgh PA, May 1989.

[18] Colin Potts and Glenn Bruns. ‘‘Recording the Reasons for Design Decisions’’. Proceedings of the
10th International Conference on Software Engineering, Raffles City, Singapore, April 1988. pp
418-427.

[19] M. J. Rochkind. ‘‘The Source Code Control System’’, IEEE Transactions on Software
Engineering, SE-1:4 (December 1975). pp 364-370.

[20] Winston Royce. ‘‘Managing the Development of Large Software Systems’’. IEEE WESCON
Proceedings, August 1970, pp 1-9. Reprinted in Proceedings of the 9th International Conference
on Software Engineering, Monterey CA, March 1987, pp 328-338.

[21] Lawrence A. Rowe adn Sharon Wensel, editor. Proceedings of the 1989 ACM SIGMOD Workshop
on Software CAD Databases, Napa CA, February 1989.

[22] Richard N. Taylor, eet al. ‘‘Foundations for the Arcadia Environment Architecture’’. Proceedings
of ACM SIGSOFT ’88: Third Symposium on Software Development Environments, Boston Mass.,
November 1988.

[23] Walter F. Tichy. Software Development Control Based on System Structure Description. Ph.D.
Thesis, Computer Science Department, Carnegie-Mellon University, January 1980.

[24] Walter F. Tichy. ‘‘RCS — A System for Version Control’’, Software — Practice & Experience,
15:7 (July 1985). pp 637-654.

[25] Colin Tully, editor. Proceedings of the 4th International Software Process Workshop: Representing
and Enacting the Software Process, Devon, England, May 1988. IEEE Computer Society, 1988.

[26] Jack C. Wileden and Mark Dowson, editors Proceedings of the 2nd International Workshop on The
Software Process and Software Environments, March 1985, Coto De Caza, Trabuco Canyon, CA.
Software Engineering Notes 11:4 (August 1986).

[27] Ludwig Wittgenstein. Tractatus Logico-Philosophicus, ed. A. J. Ayer, London: Routledge &
Kegan Paul, 1961. Section 5.6.

[28] W. A. Wulf, R. L. London, and M. Shaw. ‘‘Abstraction and Verification in Alphard: Introduction
to Language and Methodology’’, IEEE Transactions on Software Engineering, SE-2: 4 (December
1976), pages 253-265. Reprinted in M. Shaw, editor, ALPHARD: Form and Content. New York:
Springer-Verlag, c1981. Pages 15-59.




