
itivation is that form of abstraction that requires elab-

oration before execution: the actual implementation

is left to the process executor and is bounded either

by a formal grammar, a system of constraints, or by

the existence of the available building blocks. This

kind of abstraction enables one to provide guidance

without prejudging the solution (important for generic

processes) or straight-jacketing the process executer.

Strati�cation is that form of abstraction by which

we layer a system. This means of abstraction works

very well in conjunction with the previous form: strat-

i�cation enables one to supply project speci�c solu-

tions to the fragments which have their assumptions

and goals speci�ed, but not their implementations.

Speci�cally, I recommend abstracting the methods

and tools layers from the generic descriptions (which

is consistent with the separation of project and envi-

ronment structures from process structures discussed

above).

3 Requirements for Best in Class Pro-

cesses
Having detailed a number of ways in which one

can achieve generic processes and thus gain a measure

of reuse across multiple projects, there still are cases

where that approach will not work. This is partly for

technical reasons and partly for sociological ones. One

of the technical reasons is the di�erences in the types

of systems being produced: large|scale, embedded,

fault|tolerant, real|time systems may well require

an entirely di�erent set of development processes than

typical business information systems.

A sociological reason is that even if they do not re-

ally require di�erent processes, they certainly feel that

their processes are di�erent. There is also bound to be

a certain amount of reluctance to move towards com-

mon processes when there is this perception of di�er-

ence. This was certainly my experience with various

groups company wide.

An alternative approach is the one that we took

in the process team to address the problems of

company|wide processes [9]. Instead of common pro-

cesses, we de�ned the requirements for best in class

software development processes. The intent of this

approach is to set the standards for the various parts

of the company to aim for. Along with the require-

ments we provided examples of processes that have

met these requirements and that were in use in some

part of the company.

The advantage of this approach is that it allows

autonomy while setting the goals for the individual

projects processes. The pitfall to be avoided is de�ning

the requirements at such a high level that virtually any

development process can satisfy them. Conformance

(or non-conformance) then becomes a matter for the

individual projects.

References
[1] David C. Carr, Ashok Dandekar, and Dewayne

E. Perry. \Experiments in Process Interface De-

scriptions, Visualizations and Analysis", Software

Process Technology | 4th European Workshop,

EWSPT'95 , Wilhelm Schaefer, ed. Lecture Notes

in Computer Science, 913, Springer-Verlag, 1995.

pp 119 | 137.

[2] Ashok Dandekar and Dewayne E. Perry. \Experi-

ence Report: Barriers to an E�ective Process Ar-

chitecture", submitted for publication.

[3] Ashok Dandekar, Dewayne E. Perry and Lawrence

G. Votta. \A Study in Process Simpli�cation",

submitted for publication.

[4] Dewayne E. Perry. Policy and Product-Directed

Process Instantiation. Proceedings of the 6th In-

ternational Software Process Workshop, 28-31 Oc-

tober 1990, Hakodate, Japan.

[5] Dewayne E. Perry. \Policy-Directed Coordination

and Cooperation", 7th International Software

Process Workshop , Yountville CA, October 1991.

[6] Dewayne E. Perry. \Humans in the Process: Ar-

chitectural Implications", Proceedings of the 8th

International Software Process Workshop, March

1993, Schloss Dagstuhl, Germany.

[7] Dewayne E. Perry. \Enactment Control in Inter-

act/Intermediate" Software Process Technology |

3rd European Workshop, EWSPT'94 , Brian War-

boys, ed. Lecture Notes in Computer Science, 772,

Springer-Verlag, 1994. pp 114 | 118.

[8] Dewayne E. Perry. \Issues in Process Architec-

ture", Proceedings of the 9th International Soft-

ware Process Workshop: The Role of Humans in

the Process, October 1994, Airlie VA. IEEE Com-

puter Society Press. pp 138|140.

[9] SLG Process Subteam. \SLGProcess Subteam

Best-In-Class Software Process Requirements; Re-

lease 2", AT&T, December 1995.

and process instantiation time to form a complete pro-

cess system for a particular project and its environ-

ment.

2.1.2 Separation of Descriptions and Policies

I have argued that elsewhere ([4], [5]) that policies

are one of the fundamental components of process de-

scriptions and that combined with the product state

become one of the primary drivers in the dynamic and

concurrent aspects of software processes. To achieve

the
exibility necessary for a process system to serve

e�ectively the development of software systems, one

must be able to vary the policies governing activity as-

sumptions and results, cooperation and coordination

among people, and the important product states.

Analogous to abstracting speci�c tools into generic

technological activities is the abstracting of speci�c

policies into a generic policy vocabulary. Not only

then does this enable the process administrators to

vary the policies over the cycle of product develop-

ment, it enables us to abstract these policies so that

they may be instantiated as appropriate for a speci�c

projects and thus vary appropriately across projects

with minimume�ect on the process descriptions them-

selves.

2.1.3 Separation of Interfaces and Implemen-

tations

For the same reasons that we separate interfaces from

their implementations in the components that are used

to build the software products, we separate process

interfaces from their implementations. As in software

modules, this form of encapsulation enables us to vary

the implementationwhile maintaining a uniform inter-

face. In terms of generic processes, we can maintain

an uniform interface across various uses, but vary the

implementation. Moreover, it enables us to do a vari-

ety of analyses and visualizations [1].

Reuse of the interfaces may extend in either of two

directions. First, it may be that the implementation is

varied from instantiation to instantiation. Second, we

may reuse just the interface and delay the binding to

the actual implementation and use the interface as an

e�ective means of controlling strati�cation (discussed

below).

2.1.4 Separation of Fragment Concerns

A di�erent kind of separation is that along functional

lines and akin to the problem of module and subsystem

organization in software products. It is the appropri-

ate packaging of process fragments into domain related

process components. For example, two typical cases

are reviews and e�ort estimates. It is often the case

that both design reviews and design e�ort estimates

are packaged as part of the design process, partly be-

cause it is what designers do. However, in both cases

these activities are more properly part of quality and

project management processes respectively.

This incorrect alignment is even more obvious when

you consider that both reviews and e�ort estima-

tions are part of requirements, architecture, coding

and testing as well. When looked at carefully, these

activities are often identical, with only minor di�er-

ences that could be parameterized for the particular

domain. Thus, these activities should be considered

to be generic process fragments and realigned with

the appropriate process components.

It is a natural enough temptation to confuse what

people do with an appropriate process component and

process system architectural structure. The latter ap-

proach will yield a more generic process system, where

the former will not.

2.2 Level of Detail

A pervasive problem that a�ects both use and reuse

is that of process complexity [3]. One important con-

tributor to that complexity is the level of detail and

the way that detail must be describe because of the

process formalism. Clearly complexity and an inap-

propriate level of detail will inhibit reuse as well as

use.

We claim that a useful approach to this problem is

that provided by Interact/Intermediate [5]: de�ning

process fragment assumptions and goals (expressed

via policies) is a way of combating that complexity

and also a way of focusing the fragment descriptions

on the important aspects that will contribute to more

generic process descriptions. Another side-e�ect of

this approach is the focus it puts on the human-centric

nature of the environment: it is the person executing

the process who decides when and how to satisfy the

assumptions and when and how to satisfy the various

goals.

2.3 Abstraction Mechanisms

Without the necessary abstraction mechanisms, it

is impossible to de�ne generic processes. One of the

standard forms of abstraction is that of parameteri-

zation: abstracting values, types, objects, activities,

methods, techniques and even processes and subpro-

cesses.

There are several other forms of abstraction that

are also useful: primitivation and strati�cation. Prim-

Practical Issues in Process Reuse

Dewayne E. Perry

Systems and Software Research Center

Bell Laboratories

Murray Hill NJ 07901

1 Introduction

There are two fundamental considerations that

must be taken into account for in supporting software

development processes: the necessity of a human|

centric process environment and the extremely dy-

namic and concurrent nature of software development

processes (especially in large|scale software develop-

ment, but even in small|scale as well) [6]. This con-

text is the basis for discussing various practical issues

in process reuse.

In this paper I will discuss two rather di�erent ap-

proaches to process reuse: the �rst is the use of generic

processes [2], and the second is the use of requirements

for best in class processes [9]. The �rst approach aims

at providing a generalized approach that allows for as

much commonality across projects while supporting

the necessary customization and tailoring for each in-

dividual project. The second approach is one that is

perhaps more realistic for company-wide process reuse

where the di�erences between projects may be too

great to be accommodated by generic processes.

2 Generic Processes

There are several dimensions to generic processes:

the separation of concerns, the level of detail, and the

abstraction mechanisms. Each of these dimensions

a�ects the generality of process descriptions: some

choices will enhance the generality, others will limit

it. I will discuss each of these dimensions and in-

dicate where generic descriptions are enhanced and

where they are hindered. Coincidentally (perhaps),

the appropriate choices are aligned with choices that

are congruent with the contextual issues of human|

centric and dynamic/concurrent approaches.

2.1 Separation of Concerns

Analogous to non-functional considerations that

limit the potential reuse of product components (by

embodying di�erent tradeo�s from the ones desired

and not being able to disentangle those tradeo�s from

the functionality) are a number of process related as-

pects that cause similar limitations. Among these lim-

iting factors are

� project and environmental information,

� lack of separable interfaces, and

� inappropriate organization or encapsulation of

process fragments.

2.1.1 Separation of Process, Project and En-

vironment

Foremost among these factors limiting reuse are

project aspects that are embedded in the process de-

scriptions. The supporting environmental details are

almost as pervasive as project related details. In part

this is a process architectural issue: where to draw

the boundaries between the signi�cant architectural

components in a fully formed process system [8].

One sure way to make a process system unusable

by other projects is to embed a speci�c project struc-

ture into the process descriptions. For example, three

project aspects that are often incorporated into pro-

cess descriptions are

� project milestones and schedules

� project roles, obligations and permissions, and

� the projects organizational structure.

Equally embedded in process descriptions are the

underlying supporting tools and technology. It is rela-

tively easy to abstract from a particular tool to the ba-

sic technological activities that represent these tools.

Given this approach the particular projects can merge

in their own environment descriptions and bind the

basic technological activities to the appropriate tools

and objects.

These project and environmental components

should be removed from the process descriptions, be

described separately, and then merged in at project

