
Position Paper:
The Iteration Mechanism in the Inscape Environment

Dewayne E. Perry

AT&T Bell Laboratories, 3D-454

600 Mountain Ave

Murray Hill, NJ 07974

The Inscape Environment

The focus of my research in the Inscape Environment [Perry 85a, 85b, 86b] is on the construction and

evolution of large programmed systems. There are two key concepts that form the basis for Inscape’s

construction and evolution process: 1) the constructive use of formal module interface specifications

(expressed in the module interface specification language, Instress), and 2) the semantic interconnection

model [Perry 86a]. By constructive I mean that in addition to providing a formal mechanism for describing

module interfaces, Instress specifications are used by the environment in constructing and modifying pieces

of software. The Inform program construction editor is knowledgeable about the interface specifications,

the programming language, and the rules of program construction. As a program is constructed, it enforces

the consistent use of the interface specifications according to the rules of program construction.

Instress specifications describe, by means of Hoare-style predicates [Hoare 69], the behavior of operations

and the properties of, and constraints upon, data defined within the module. (Extensions to Hoare’s

approach have been made to include first, the notion of obligations as a result of an operation as well as

postconditions and second, multiple results in order to specify the meaning of exceptional as well as

successful results.) These predicates form the basis for semantic interconnections — they are the elements

of interconnections. As a program is constructed, the Inform editor automatically manages the details of

the interconnections between pieces of the program, thereby actively participating in the program

construction process.

The resulting interconnection structure forms the basis for environment-knowledgable change. Because of

the fine-grained interconnections (the predicates), Inscape, through the Infuse source change management

and coordination subsystem [Perry 86c], is able to determine the implications and the extent of changes and

quide the programmer in order to guarantee the completeness and consistency of those changes. It is this

part of the environment that provides the actual mechanism for iteration during the development and

evolution process.

Sources of Iteration

In general, there are two sources of iteration in the life of a programmed system: the first source is the

necessity of making changes; the second source is the effect of any given change. The former may be

considered as global iteration and the latter as local iteration. Global iterations occur for a variety of

reasons: changes to fix implementation errors, changes to fix design and requirement errors, enhancements



to extend current facilities, and enhancements to introduce new facilities. Local iterations, as a result of a

given change, occur because of the implications of changes and the problem of changes cascading — a

problem that becomes particularly complex in the context of multiple, concurrent changes as often occur in

the development and evolution of large systems.

There is an additional source of iteration that is more or less endemic to the approach used in Inscape: the

problem of getting the right abstractions incorporated into a module and developing the appropriate

interface specifications. This form of design iteration is common in all systems, but is somewhat hidden in

informal development environments. In Inscape, however, it is prominently evident and manifested in the

module interface specifications. It is for this reason that particular attention is being given to the problems

of incorporating the management of the change process into the support environment and providing

automated assistence by a change-knowledgeable environment. Thus, the Inscape environment provides

the Infuse subsystem to make it easy to change specifications and determine their implications. A very

useful benefit of this provision is that the structure needed for Infuse provides the structure for the two

types of iteration mentioned above.

Inscape’s Iteration Mechanism: Infuse

The Infuse facilities for managing and coordinating source changes consist of the following parts: a

hierarchy of experimental databases; a means of automatically partitioning the components to be changed

into experimental databases and of merging the changed components back into the parent database; the

notion of change propagation and consistency checking within an experimental database; and private and

cooperative workspaces in which to simulate the effects of changes.

The scenario for a set of changes is as follows. The set of modules to be changed is first colected into an

experimental database (EDB) and then partitioned recursively into a set of hierarchical experimental

databases (HEDBs) where the leaves of the tree are singleton EDBs which contain a single module where

the actual changes occur. When all the children EDBs have been deposited into the parent EDB, the

changes are propagated to the appropriate components in that EDB and local inconsistencies are reported.

Conflicting changes are then resolved and the EDB is repartitioned recursively in order to make the desired

changes. When all conflicts and local inconsistencies have been resolved, that EDB is deposited into its

parent EDB. The process continues until all the changes have been propagated and all the inconsistencies

have been resolved.

HEDBs, then, provide a structure for enforced cooperation, a forum for change negotiation, and a means of

managing iterations in the change process. By partitioning the components into separate EDBs recursively,

we restrict the bounds of change propagation and consistency checking as well as the number of potential

conflicts to be negotiated at any given time.

The optimal oracle for partitioning would be one that answers the question which pieces will change and

how? Unfortunately, this oracle is not available. An approximation to this oracle is determined by the

strength of dependency interconnections (which in Inscape are determined at the semantic level in addition

to the syntactic and unit levels). The primary cost to be considered is that of consistency checking and

change propagation; secondary costs occur in the creation and merging of EDBs. Thus, it would seem that

inconsistencies are more expensive at the upper levels of the hierarchy and less expensive near the leaves.



Partitioning, then, places the heaviest interconnections near the leaves in order to minimize the cost of

inconsistencies and to reduce the depth of local iterations.

Because each EDB (except the topmost EDB) has an incomplete set of modules, we need the notion of

local consistency in order to determine the implications of changes, deletions, additions, and

rearrangements of source code. Basically, this amounts to checking the consistency of those elements that

are both defined and used within the EDB. At each level, it is only necessary to check those elements that

have not already been found to be consistent.

Workspaces are a complimentary facility to EDBs and provide both cooperative and private means of

determining the effects of changes independent of the hierarchy of EDBs, that is, independent of the

enforced partitioning. The change simulation mechanism enables the programmer to determine the effects

of a change without committing the change. In a cooperative workspace (where a set of programmers

together collects their respective modules into the workspace), programmers can determine the mutual

effects of a set of changes. In a private workspace (where a programmer selects a set of modules for his

workspace independent of those responsible for them), a programmer can determine the effects of changes

in his or her module without actually affecting the implicated modules in the workspace.

Summary

Infuse provides the mechanism for managing the process of iterating over source changes. The initial extent

of the iteration is approximated by the partitioning algorithm on the basis of weighted interconnections; the

extent of subsequent iterations is determined by the inconsistencies and conflicts that occur at each level in

the hierarchy.



References

[Hoare 69] C. A. R. Hoare. An Axiomatic Approach to Computer Programming. CACM

12:10 (October 1969). pp. 576-580, 583.

[Perry 85a] Dewayne E. Perry. Program Construction and Evolution based on Interface

Specifications: Motivation and Overview. Technical Report. Computer

Technology Research Lab, AT&T Bell Laboratories, May 1985.

[Perry 85b] Dewayne E. Perry. Position Paper: The Constructive Use of Module Interface

Specifications. Third International Workshop on Software Specification

and Design. IEEE Computer Society, August 26-27, 1985, London, England.

[Perry 86a] Dewayne E. Perry. Software Interconnection Models. Draft Summary.

Technical Report. Computer Technology Research Lab, AT&T Bell

Laboratories, January 1986.

[Perry 86b] Dewayne E. Perry. The Inscape Program Construction and Evolution

Environment. Extended Abstract, April 1986. Submitted to Practical Software

Development Environments Conference, Palo Alto, CA, December 1986.

[Perry 86c] Dewayne E. Perry and Gail E. Kaiser. Automatically Managing and

Coordinating Source Changes in Large Systems. Extended Abstract. April

1986. Submitted to Practical Software Development Environments Conference,

Palo Alto, CA, December 1986.


