
Humans in the Process: Architectural Implications

Dewayne E. Perry

Software and Systems Research Laboratory
AT&T Bell Laboratories,

Murray Hill NJ 07901
dep@research.att.com

1. Introduction

There are a variety of ways in which humans may be
treated in a process-centered environment. At one end of
the spectrum, the human is treated as a subroutine that is
invoked by the environment in the execution of the
process model in much the same that any tool is invoked
within that process. At the other end of the spectrum, the
process-centered environment provides a virtual machine
upon which the human executes some portion of the
process model. The first case represents a rather static
view of process in much the same way that a program
represents a static view of a computation. The execution
of the various activities and the invocations of both
humans and tools are under the control of the process
model. The second case, on the other hand, represents a
much more dynamic view of the process in which the
instance of a particular model is created and adapted by
the human ‘‘on the fly’’. While the model defines to
some degree the general order of activities in the model,
the human exercises a much larger measure of control
over the planning and execution of those activities.

The degree to which a process formalism leans towards
one or the other has a significant impact on certain
aspects of the environment architecture. While many of
the demands on a process-centered environment by these
two positions are quite similar (for example, support for
process evolution, automation of mundane activities and
invocations of tools, process monitoring for
measurement, analysis, feedback and optimization, etc.),
the more dynamic emphasis of the second approach
stresses two particular aspects of architectural support:
dynamic instantiation of process fragments; and
reification of the process model, process state and
process history.

2. Dynamic Instantiation

The static and the dynamic approaches are similar in
approach to basic instantiation of process models: both
provide the ability to define generic process models that
can be then customized by instantiating them with
project-specific arguments. What distinguishes the two
approaches is the time of binding the arguments to the
generic models. The static approach tends to do most of
the binding when the model is initiated — that is, the
models are instantiated in much the same way that Ada
generic packages are: at the time of model elaboration.
The dynamic approach may do that as well — that is,
provide for binding at the time of elaborating the model
— but it requires a much more elaborate dynamic
binding mechanism as well.

Part of this difference stems from the different degree of
specification that is found in representative examples of
these two different approaches. A process formalism that
treats the human as a subroutine tends to provide more
detailed descriptions of the process (as for example
represented by the APPL/A version of the ISPW6 and
ISPW7 examples). The process definition tends to be
spelled out in specific details for the human processor.
Customization, then, tends more towards
parameterization, rather than amplification. A process
formalism that treats the human as the controller of the
process tends towards underspecified models (as for
example in the Interact ISPW6 and ISPW7 examples).
While Interact/Intermediate provide for parameterized
customization, it also enables the human processor to
amplify and elaborate the process model during its
execution.

An example of this dynamic kind of process elaboration
is provided by Interact/Intermediate. In the process
modeling language Interact, the model definer may
choose the level of detail to be be provided in the



structure of process activities. Facilities exist for
providing the same level of specification as the static
approach — that is, descriptions down to the last detail.
However, the preferred approach is to specify only the
various possible goals (and resulting obligations) for the
activity leaving the implementation structure of the
activity as primitive. One is also able to provide
‘‘highlights’’ of an implementation as guidance where
there still much to be filled in to make it a complete
implementation. In both of these cases, the actual
implementation is amplified and elaborated at activity
execution time.

This process of amplification and elaboration requires
dynamic binding that takes more than just arguments for
parameters. The human processor is building an
implementation of the activity, either from scratch or
from the guideposts provided by the abbreviated activity
structure.

3. Model, State, and History Reification

Guidance is one of the aspects of process modeling that
is paramount regardless of the approach taken. With the
static approach, the detailed guidance is provided by the
detailed specification of the model implementation. With
the dynamic approach, however, much more elaborate
support is required in order to be able to examine the
current state of the process model, the current state and
its relationship to the current model, and the history of
what has been done in the past.

Given that the details of how an activity is to be done
may not be specified, but at best implied by the activity
description, the human processor requires elaborate
support to determine what implementations are possible
for a given activity. There are several ways in which this
might be done. First, one might inspect other
instantiations of the activity in question to see how
others have elaborated the implementation. This
solutions require the ability to retrieve previous
instances of activity elaborations. Alternatively, one
might inquire as to what activities provide the various
results defined by the activity in question and use the
support environment to interactively plan various
strategies for elaborating the activity structure. This
solution requires the ability to inspect the current state of
the model definition.

The current state of the project, product and process is of
paramount importance, for both the project manager and
individual developers, in determining progress within
that model as well as determining what activities can be
done next. It is clearly the case that both approaches

require access to current state. There are differences,
however, as to the degree to which that state must be
exposed. In the static approach, the process’ dynamic
aspects require knowledge of the current state, much the
same as a program at any given point requires data
generated by the preceding computation – the current
state is the basis for control within the process execution.
In the dynamic approach, the humans controlling the
process require access to the current state for guidance,
both in terms of understanding the process and in terms
of planning the continuation of that process. Clearly,
reification of the history of the process is required for the
same reasons.

In the case of the static approach, exception handling is
typically built into the process descriptions in much the
same way that forward recovery is built into fault
tolerant programs. In an approach such as that
exemplified by Interact/Intermediate, this level of detail
is not provided in the descriptions and indeed is not
provided in the process modeling language itself. We
require then a much more elaborate interface to the
process state in which error recovery can be done
dynamically by the human controller in response to
perceived problems in the process execution. Thus we
need facilities to back out and restore the process state in
various ways on the fly — that is, we need recovery
facilities.

4. Conclusions

The place of the human in the process has significant
architectural implications for process-centered
environments. We have focused on two such aspects and
distinguished the differences between a static approach
where the human is considered to be a subroutine and a
dynamic approach where the human uses the
environment as the virtual machine on which to execute
his or her process. In the latter approach, the
environment must support much more elaborate dynamic
binding and instantiation facilities, as well as more
elaborate model, state and history reification facilities.


