
Issues in Process Architecture

Dewayne E. Perry

Software and Systems Research Center

AT&T Bell Laboratories

Murray Hill NJ 07901

Abstract

I consider the problems of process system architec-

ture in the context of the Perry-Wolf model of soft-

ware architecture: process elements are executed in

process systems by both machines and people; data el-

ements tend to be informal documents in process sys-

tems rather than formal, machine manipulatable ob-

jects; and connecting elements are much more complex

in process systems, involving both automated, social

and organizational structures.

1 Introduction
The fact we refer to the software development

process and provide a process support environment
is a measure of the (im)maturity of much of process
research. We do not have a software development
process, we have a large set of processes. We have
multiple, interdependent processes in much the same
way that software products have multiple, interdepen-
dent components.

Because of this component structure of our develop-
ment processes, we have architectural considerations
that are both similar to and di�erent from product ar-
chitectures. The similarities stem from the fact that
a process architecture is made up of data, processing
and connecting elements [6] in much the same way
that a product architecture is. The di�erences stem
from the facts that 1) people are the primary (essen-
tial, dominant) processing agents that manipulate the
data and perform the process activities and 2) the con-
necting elements are often organizational and social
rather than just technological.

In the discussion that follows, I will consider these
multiple, interdependent processes �rst within their
architectural context and second within their organi-
zational and social context.

2 The Architectural Context
While software development processes are clearly a

domain-speci�c set of business processes, the actual
set of elements in this domain-speci�c process archi-
tecture varies widely along several dimensions. The

actual set of elements in a development process archi-
tecture will vary dependent on the size of the project
(1-5, 20, 200, 2000 people, etc), the type of product
developed (safety critical, prototype, etc), the type
of approach (entrepeneurial, waterfall, spiral, evolu-
tionary, etc), or the level of process maturity. These
dimensions partition the process architectures into dif-
ferent process architectural styles.

More fundamental than the determination of ar-
chitectural elements is the problem of de�ning what
an architectural element is. In building software, we
have a relatively good understanding what the various
component granularities are. In de�ning processes,
however, we do not yet understand and agree upon
the various granularities needed to create a process
architecture and we do not yet agree on the princi-
ples of process element decomposition [2]. We have
a small vocabulary to describe these components, but
no well-de�ned meanings or well-understand sizings.
For example, the term process is used to mean any-
thing from a small activity that may or may not be
automated to the entire set of activities that is done
in the development of a product.

In the context of a very large development project
and organization that I have been working with, the
term \process" is used to denote a large set of (perhaps
concurrent) activities. Some of these activities include
the use of tools but many are often done by people in-
dependent of a supporting technological context. In
fact, even in the most tool intensive of these activities
| for example, doing a system build [7] | the human
element is critical and dominant over the technologi-
cal. Certainly the large-grained processes are not of
the automated or even automatable type. The criti-
cal di�erence between process processing elements and
product processing elements is that they are entities
that are performed by people | that is, humans, not
tools are the processing agents. They may be formally
modeled [3], but much of the processing that is done
by people is done informally and outside the context
of technological support. Moreover, much of what is

done even in the context of technological support is
actually independent of that support.

Most of the data elements in process architectures
are unlike those in product architectures in a way simi-
lar to the way that process processing elements are un-
like their product counterpart. These data elements
are generally informal documents. At best, various
instances of the same kind of data element have the
same general structure (often derived from the use of
document templates). While these data elements can
be formallymodeled [3], they are not automatedlyma-
nipulatable by process elements as they are in product
architectures. Again, as with the process elements,
these data elements are manipulated by people as the
processing agents.

We are on �rmer ground, however, in considera-
tions of architectural form. Here, at least at one level
of abstraction, there is an analogy between product
architecture and process architecture. This level of ab-
straction is that of the basic relationships between ar-
chitectural elements [1]. As in product architectures,
we have process elements that have are independent

of each other | they do not depend on each other in
any way. We have process elements that are input de-

pendent | they depend on another element for some
form of input necessary to successful processing. We
have process elements that function much the same
way that subroutines do | they are nestable within
another element. For example, the bug reporting pro-
cess is performed within the context of some other
process element (often coding or testing) causing the
suspension of that element while it is performed and
returning to the suspension point when it has been
completed.

It is with elements that are both concurrent and

dependent on each other where the analogy begins
to break down. We have some concurrent dependen-
cies that function along the lines of cooperating pro-
cesses with well de�ned points of interactions, or even
that function like co-routines. However, we also have
instances of concurrent dependencies that are much
more unstructured. For example, it is often the case,
especially in large projects, that the design and cod-
ing processes interact in arbitrary ways | dependent
on the circumstances rather than on well the de�ned
modes of interaction that we have in inspections, etc.
It is in this informal and unstructured form of interac-
tion that we need further work on descriptive notation.

We �nd one other analogue relationship in product
architecture | namely, that of one element monitor-

ing another. The most appropriate case of the kind
of relationship is that of the progress monitor in a

database system. Its function is to monitor the trans-
actions and determine when progress cannot be made
for some subset of the transactions because of resource
contentions. Its job is then to reallocate resources so
that at least some transactions can progress. The
project management process element functions anal-
ogously within the context of a process architecture.
Note, however, that we do not have the analogous sup-
porting infrastructure that we have in database archi-
tectures. Neither do we have supporting notations to
describe this kind of relationship between process ele-
ments.

3 The Organizational and Social Con-

text
The analogy between process and product archi-

tecture breaks down even further when we consider
connecting elements. Where processing and data el-
ements exhibit some automated aspects, connecting
elements exhibit even less automation. Practically all
of the connecting elements are organizational and so-
cial in structure | and certainly informal and non-
automated.

At the �ne-grain level of connecting elements are
various forms of communication between people such
as electronic mail, phone-mail, phone conversations
and face-to-face interchanges. We found in one of
our process experiments [4] that the automated forms
of communications (speci�cally electronic mail) were
used only only for broadcast messages. Technical in-
terchanges were invariably done either in person or
over the telephone.

At the large-grain level of connecting elements are
various forms of meetings, document hando�s, test
laboratories, etc. I will consider several such elements
and indicate some interesting experiments with these
connecting elements that have illustrated signi�cant
improvements in both their structure and their per-
formance.

Probably the most common process architecture
connecting element is the document hando� . This
element is as prevalent in process architectures as the
procedure call is in product architectures. Unlike a
procedure call, however, it is a very lossy channel
of communication. The resulting documents repre-
sent but a pale shadow of the knowledge gained in
constructing them. This uncommunicated knowledge
is needed in understanding those documents properly.
Without it, the documents become a source of error in-
jection. In one process experiment [5], the project was
organized in such a way as to minimize these hando�s
and thus to minimize the error insertion aspects of
the element. This was done by using interdisciplinary

teams to maintain the continuity of knowledge while
handing o� the document from one process element to
the next. In other words, the underlying processing
structure of the process and connecting elements was
changed organizationally to incorporate previously lo-
cal data elements into the combined structure. Both
the performance and quality of the resulting process
architecture improved dramatically.

Another common connecting element is that of re-
lying on management for technical decisions. This is a
two-way connecting element where a request for a de-
cision is sent up the hierarchy to the appropriate level
of responsibility and eventually the response comes
back down the hierarchy. The typical problem with
this kind of connecting element is that it is su�ers
from a wide degree of variance in response time. In
a another process experiment [5], the project was or-
ganized in such a way to minimize the time factor of
this connecting element. This was done, again, by us-
ing interdisciplinary teams, with the added factor of
decision empowerment. The time variance factors as-
sociated with the connecting element were removed.
Again, both the performance and the quality of the
resulting process architecture improved dramatically.

One of the problems that we have uncovered in our
visualization and analysis experiments [1] is the large
amount of complexity introduced into the process ar-
chitecture because of the lack of appropriate connect-
ing elements. In particular, project management re-
quires the production of a large number of artifacts
(data elements) to be produced by the managed pro-
cesses for them only. This increases the number of
data elements signi�cantly and the number of con-
nections between the project management process el-
ement and other process elements. What is needed
is a monitoring capability to serve as a connector be-
tween project management and various process and
data elements as well as the underlying process state.

Yet another problem arises with respect to the con-
straints on the process elements. We found the follow-
ing classes of process elements in our analysis of our
current process architecture: processes, organizations
and roles. While some roles and organizations are nec-
essary, the primary problem is that they represent un-
de�ned process elements. Clearly, we must refer to
customers as part of our process architecture. How-
ever, the primary class of process element should be
processes. They in turn are decomposed into various
subprocesses and tasks where the actual consumption
and production of the process artifacts takes place.
These processes are performed by organizations and
their internal task steps are performed by people in

various roles. Thus the distribution of the various data
elements via the connecting elements should be be-
tween processes. Organizations (as groupings of peo-
ple) and roles (as performed by people) are the pro-
cessing agents of the process elements, not appropriate
architecture elements.

4 Summary
Process architecture di�ers from product architec-

ture in a number of important ways. First, where
product architecture assumes computational process-
ing agents for the various architectural elements, pro-
cess architecture has in addition two radically di�er-
ent type of processing agents | namely, people and
organizations. Second, where product architecture as-
sumes components that have computationally well-
de�ned semantics, process architecture usually has
components that, while they may be modeled formally,
are at heart informal with loosely de�ned semantics
and unenforceable execution.

References
[1] David C. Carr, Ashok Dandekar and Dewayne E.

Perry. \Experiments in Process Description, Visu-
alization and Analysis", European Workshop on

Software Process Technology 1995 , Leiden, The
Netherlands, April 1995.

[2] Ashok Dandekar and Dewayne E. Perry. \Expe-
rience Report: Barriers to an E�ective Process
Architecture | Extended Abstract", AT&T Soft-
ware Symposium, Holmdel NJ, October 1994.

[3] Dewayne E. Perry. \Policy-Directed Coordination
and Cooperation", 7th International Software

Process Workshop , Yountville CA, October 1991.

[4] Dewayne E. Perry, Nancy A. Staudenmayer and
Lawrence G. Votta. \Understanding Software De-
velopment Processes, Organizations and Technolo-
gies", IEEE Software , July 1994.

[5] Dewayne E. Perry and Lawrence G. Votta. \A Tale
of Two Projects", July 1993. Technical Memoran-
dum.

[6] Dewayne E. Perry and Alexander L. Wolf. \Foun-
dations for the Study of Software Architecture",
ACM SIGSOFT Software Engineering Notes 17:4
(October 1992), pp 40-52.

[7] Alexander L. Wolf and David S. Rosenblum.
\Process-Centered Environments (Only) Support
Environment-Centered Processes", 8th Interna-

tional Software Process Workshop , Dagstuhl Ger-
many, March 1993.

