
Inquire: Predicate-Based Use and Reuse

Dewayne E. Perry Steven S. Popovich
Software and Systems Research Center Department of Computer Science

AT&T Bell Laboratories Columbia University
Murray Hill, NJ 07974 New York, NY 10027

Abstract

There are four fundamental aspects of use and reuse in building
systems from components: conceptualization, retrieval,
selection and correct use. The most important barrier to use
and reuse, initially at least, is that of conceptualization. The
Inscape Environment is a specification-based software
development environment (SDE) integrated by the constructive
use of formal interface specifications. The purpose of the
formal interface specifications and the semantic
interconnections (created and maintained as software is built
and evolved) is to make explicit the invisible semantic
dependencies that result in conventionally built systems.

The important ingredient provided by Inquire in
conceptualization, retrieval, selection and use is the set of
predicates that describe the semantics of the elements in the
interface. These predicates define the abstractions that are
germane to the module interface and describe the properties of
data objects and the assumptions and results of operations in a
module. Use and reuse of components is based on a
component’s ability to provide needed semantics — either in
terms of data object properties or in terms of operation
behavior — at a particular point in a system. It is the purpose
of Inquire, the browser and predicate-based search mechanism,
to aid both the environment and the user in the search for the
components that will provide the desired predicates — that is,
the desired properties or behaviors — that are required to build
and evolve an implementation correctly.

1. Introduction

There are four fundamental aspects of use and reuse in building
systems from components:

• Conceptualization — understanding what is needed;

• Retrieval — finding possible components to use;

• Selection — determining which of the retrieved
components to use; and

• Use — using the selected components correctly.

Compounding these issues is the fact that use and reuse occurs
at multiple levels in building systems. Perry and Wolf [13]
note that the architecture level is the most appropriate place to
begin thinking about reuse of components because the system

at that point is constrained the least. The process of design
narrows the possible choices because the constraints increase
with each design decision. In this paper, we focus on the
problems of use and reuse where the components are modules,
represented by their interfaces. Independent of the granularity
of the component, the most important barrier to use and reuse,
initially at least, is that of conceptualization — that is, of
understanding the components and their underlying models; in
short, understanding what is needed at any particular place in
the system.

The Inscape Environment [8,9] is a specification-based
software development environment (SDE) integrated by the
constructive use of formal interface specifications. These
specifications serve two purposes: first, they express the intent
of the designer about the externally visible behavior of the
operations described in the interface and define the properties
of data objects declared and exported in the interface; second,
they provide the basis for the construction of semantic
interconnections [8] among interfaces and between interfaces
and implementations. On the basis of these two uses, Inscape
makes explicit the semantic dependencies among the various
components in a software system, which are implicit in
normally constructed systems, and uses these dependencies to
assist in the construction and evolution of these systems.

Inscape uses these explicit semantic interconnections in the
process of construction and evolution in several ways:

• to synthesize interfaces from implementations [10],

• to detect semantic errors [10],

• to determine the implications of changes [8,9], and

• to find objects to supply desired behavior and properties
(that is, to supply the needed predicates).

It is on this last use that we focus our attention in this paper.
The important ingredient in conceptualization, retrieval,
selection and use is the set of first-order predicates (with typed
parameters) that describe the semantics of the objects in the
interface. These predicates define the abstractions that are
germane to the module interface and describe the properties of
data objects and the assumptions and results of operations in a
module. For data objects, predicates represent additional
information not provided by the typing mechanism. This is
particularly important for a weakly typed language such as C.
The amount of semantics provided by the specifier in this form



is a design issue: what are important semantic properties that
need to be maintained for the data objects.

For operations, predicates represent the assumptions and
results. To some extent, the level of detail provided is a design
issue here as it is for data objects: what are the important
semantic properties embodied in the operations. However, as
the interfaces represent the external behavior of the operation,
it is critical that all external state changes be represented in the
specification. Only in local objects should state changes not be
reported beyond the operation’s boundaries. Note that in a
language such as C that has only rudimentary abstraction
mechanisms, information hiding is really information
withholding. Conversely, one has a large degree of latitude in
reporting observations about the current state made within the
implementation — though it is usually the case that the more
information the better.

Use and reuse1 of a component is based on its ability to provide
needed semantics — either in terms of data object properties or
in terms of operation behavior — at a particular point in a
system. It is the purpose of Inquire, the browser and
predicate-based search mechanism, to aid both the environment
and the user in the search for the components that will provide
the desired predicates — that is, the desired properties or
behaviors — required to build and evolve an implementation
correctly.

In Section 2, we discuss the current state of browsers and
retrieval mechanisms and indicate their strengths and
weaknesses with resect to the four fundamental aspects of use
and reuse. In Section 3, we indicate how Inquire differs from
these mechanisms, delineate the shape of Inscape’s predicate-
based search and browse mechanism, and introduce Inquire’s
retrieval commands for operations, data objects and modules.
In Section 4, we illustrate Inquire with an extended example.
Finally, in Section 5, we summarize our research contributions,
present the current state of the Inquire prototype, indicate some
possible extensions, and discuss some of the future directions
we might take.

2. Discovery: Browsing, and Retrieval

There are two general ways of supporting use and reuse:
browsing and searching. With browsing, one looks around to
see what there is and follows up various clues and leads to
slowly build an understanding of what is available. With
searching, one retrieves candidate components on the basis of
some criteria, perhaps expressed as a user or system generated
query.

The first approach is useful for basic or primitive discovery.
Browsers enable the programmer to follow various

_ ____________________

1. If we look at Krueger’s classification of reuse categories [7], we would say
that Inscape supports various levels of reuse from design and code scavenging
through software schemas, though there are hints of very high level languages
and software architectures categories here as well.

relationships and dependencies among existing components
and use analogical clues (for example, in the ways that
components are used) to build a conceptualization of the
components in their current context. For example, Interlisp’s
Masterscope [20], Steffen’s Cscope [19], and CIA [2] provide
static views of the organization of a system and basic means of
navigating through that structure to build an understanding of
the components. MView [1] provides both static and dynamic
browsing capabilities, enabling the user to gain an
understanding of the system structure and how the components
fit in structurally, and also to gain an understanding how the
components fit together executionally. The connections among
the various components utilized by both the static and dynamic
browsers are syntactic — that is, the dependencies are explicit,2

but the reasons for the dependencies are not. For the rationale
of the dependencies, one must depend on external sources of
information. Moreover, the larger the system, the more
difficult it is to have any confidence in browsing as anything
other than a random attack on the problem. Thus, browsers are
useful primarily for building an understanding of the system
and its components, but have little to offer in terms of retrieval,
selection, or use, except to the extent that the conceptual
understanding of the system enables the user to perform those
operations independent of retrieval tools.

The problems of retrieval are based, at least in part, on those
problems we encounter in naming. Browsing works as well as
it does partly because of the semantic clues that we embed in
the naming of the various syntactic objects that form the basis
of browsing. The success of classification schemes, and their
associated retrieval mechanisms, depends on how well the
keywords capture the appropriate conceptualizations that are
embodied in the objects of interest. In particular, this is a
difficult problem. The concepts and their associated names are
application specific, even project specific. Conceptualization
and naming are exceedingly difficult to generalize across
different projects and applications.

Basic keyword-based retrieval schemes [5] (see Frakes and
Gandel [4] for a general discussion of reuse library
classification schemes), in particular, suffer from these naming
problems. Proper utilization of keyword-based retrieval
depends on how well the keywords can be used to describe the
components and how well they are understood by those who
try to retrieve components. The utility of these mechanisms
lies in the fact that they provide a means of expressing basic
concepts — that is, embedding semantics into the keywords.
How well they do this depends on how well they approximate
the concepts of importance for a particular application or a
particular project. Retrieval is generally efficient, but help with
selection and correct usage must be found outside the retrieval
system. In addition, these basic approaches provide no means

_ ____________________

2. Of course, there are many ways to make those connections as obscure as
possible with pointers. It is in this latter case that an execution based browser
is most useful.



of indicating relationships among or between these various
concepts represented by the key-words, nor do they provide a
mechanism for constructing inferences.

There are several approaches that provide solutions to the latter
two problems. Prieto-Diaz’ faceted classification scheme [14]
and LaSSIE [3] are examples of these approaches. Prieto-Diaz
uses a conceptual graph with weighted terms to indicate
conceptual distance (or closeness) between the terms of a facet.
The weights and the type-supertype relationships provide an
ordering of terms by their conceptual distance. This ordering
provides a useful approximation of some relationships among
concepts and, with the supporting evaluation system, enables a
more flexible retrieval of components.

LaSSIE is really more a conceptual mechanism than a retrieval
mechanism. It uses a knowledge representation language
(KRL) to construct the conceptual hierarchy that represents the
conceptual model of the system. The advantage of using a
KRL is that it provides a deductive mechanism as part of the
conceptualization mechanism. The KRL’s underlying
mechanism enables LaSSIE to generalize as well as specialize
from one concept to another, thus providing a much richer
navigation mechanism than Diaz’ faceted scheme. The
strength of this approach is that various concepts are linked in
various relationships by hand (using is-a and part-of
relationships) thereby providing a logically tractable structure.

Both of these approaches provide a relatively rich mechanism
for conceptualization. LaSSIE has references to functions at
the leaves of the hierarchy, so that while its navigation facility
is quite good, its retrieval mechanism is somewhat primitive.
On the other hand, the navigation facility is very useful in
selecting a particular component. The faceted approach
provides retrieval with good recall and precision characteristics
(see [14] for the relevant data). The primary drawback of both
is that there is no direct connection with the source code, only
an informal and hand-crafted connection. We then have the
same update problem between the conceptual hierarchy and the
source code that we have between informal architecture, design
and implementation prose documents and the source code:
changes in the one must be consistently propagated to and
reflected by the other. How serious this problem is depends on
how serious the conceptual drift is for a particular system.
Given the fact that average releases of some large systems
replace approximately 15-20% of the code [12], the potential
for conceptual drift is significant.

Code-Base [18] incorporates an approach that goes part way
towards directly connecting the conceptual structure with the
application. The user interactively and incrementally does
browsing and querying about the application and the
underlying mechanism builds a knowledge base from the
results of the browsing and querying. Conceptualization results
from discovering pertinent information about the application;
retrieval builds on that incremental conceptualization.
Selection of components is then somewhat similar to that of
LaSSIE but with a knowledge-base that is more closely tied to
the application. An important aspect that has only begun to be
considered is the evolution of the conceptual structure along

with the evolution of the application (this issue is critical if
knowledge-based systems are to be practical; in fact, it is a
critical issue for all retrieval systems). Moreover, correct use
of the retrieved and selected components is outside the view of
Code-Base.

Two rather novel approaches in retrieval that depend directly
on the source code are those of Rittri [15] and Runciman and
Toyn [17]. Both are based on polymorphic type systems and
provide a relaxation of the matching condition for functional
types. They differ primarily in their ordering relation. Rittri’s
scheme provides independence of the order of the components
in a type; Runciman and Toyn provide independence from the
number of arguments. In both cases, with certain restrictions,
their ordering relations over polymorphic types correspond
well to our intuitive notions of type generalization and
specialization. Both provide efficient retrieval mechanisms,
but are limited to types as the basis for conceptualization.
Selection is then presumably limited by the type orientation as
well. Correct use of the components is partially determined by
the underlying type system. Zaremski and Wing [21] have
subsequently identified a small set of primitive function
matches that can be combined a number of useful ways,
including ways that implement the two approaches above.
Moreover, signature matching is extended to include modules
as well.

Independently (but shortly after our initial Inquire prototype
[11]), Rollins and Wing [16] experimented with the use of
λProlog as the specification and query language, utilizing
λProlog’s built-in higher-order unification to do specification
matching. They specified each Standard ML function or
abstract type following Wing’s two-tiered approach in Larch
[6].3 Their work, obviously, is the closest in intent to ours.

3. The Shape of Inquire

Inscape provides a different approach to the problem of
conceptualization and naming from the approaches discussed
above (with the exception of Rollins and Wing). The
specification logic of Instress enables the designer to define the
concepts (represented by the predicates) in a formal logic
notation with various forms of dependencies on other concepts.
Thus the complex inter-relationships among concepts are
formal logical relationships. This approach to
conceptualization as formal logical definitions and relationships
is both a strength and a weakness: a strength because of the
precision and expressivity that is attainable; a weakness
because of the undecidability of the underlying logic. Finding
ways of ameliorating the effects of intractability problems by
means of engineering trade-offs, to strike a balance between
rigor and practicality, is one of the primary research activities
in the Inscape experiment.

_ ____________________

3. We note that Larch is among the intellectual roots of Inscape. Instress is
similar to Larch’s interface languages. See [8] and [9] for more details.



A further advantage is accrued in Inscape because of the
managed connection between interface specifications and
implementations. In contrast to LaSSIE, Inscape provides
direct connections between the conceptualizations and the
source code. When the concepts themselves are changed, the
implications of those changes are propagated to their use sites
and the implications of those changes determined at those
places. When the interfaces are changed so that the objects
behave differently, (that is, they reflect a different
conceptualization), the changes are propagated to the use sites
and implications of those changes determined there as well.
Finally, when an implementation is changed, the implications
for the advertised interface and its conceptualization is
determined. See [10] for a discussion of the rules for
composing fragments and the creation of the composed
fragment interfaces.

The formal interface specifications, then, are the medium of
conceptualization and are the basis for retrieval and selection.
A mixture of interactive browsing and retrieval coupled with
Inscape’s constructive use of the interface specifications will
lead to appropriate use.

We present a general view of Inquire’s browsing and retrieval
mechanism in the next two subsections.

3.1 Syntactic Browsing

Where the browsers described earlier require auxiliary data
structures for their support, Inquire requires only the symbol
table maintained by Inscape and used to support its facility of
change propagation. The symbol table contains references to
the local definition and use sites and maintains both an import
list of those objects used locally but defined elsewhere, and an
export list of external modules that import the local module
specification. As a result, syntactic browsing is merely the
traversal of the the symbol table reference links.

The primary difference in syntactic browsing in Inscape from
that of other systems lies in the fact that predicates are an
important part of the syntactic structure. The usual browsing
along functional flow and data flow lines is supplemented by
that of predicate flow. That is, Inquire’s syntactic browsing
enables one to navigate along the flow of behavioral properties
from one object to another and to investigate the definitions,
uses and dependencies of predicates.

There are four basic syntactic browsing commands.

FIND-DEFS — Finds all definitions of a type, constant,
variable, predicate, operation, or module4 with the selected
name and displays the list of definitions in an auxiliary
window.

_ ____________________

4. Currently, Inscape only allows a flat name space for predicates and modules
— that is, all predicate and module names must be unique. For variables,
types, and operations, we allow the duplication appropriate to the specific
language. (This is possible primarily because of scope rules).

FIND-USES — Finds all uses of a type, constant, variable,
predicate, operation, or module and displays the names of
the operations where the uses occur in an auxiliary window.

SHOW — SHOW works in conjunction with FIND-DEFS and
FIND-USES and requires the qualified name (that is
modulename.itemname) of the item as input. Clicking on
one of the names in the auxiliary window (generated by the
find commands) supplies the chosen qualified name to
SHOW. SHOW then highlights the use site.

VISIT — VISIT is analogous to SHOW, except that clicking
on one of the names in the auxiliary window opens a
window for that particular object and displays the object in
a read-only manner. The user may then perform any of the
read-only mode editing commands on the object.

Thus, Inquire supports a coarse-grained discovery and
conceptualization process by means of syntactic-based
browsing that is similar to standard browsing facilities but
extended by the existence of predicates as part of that syntactic
structure.

3.2 Predicate-Based Retrieval

Where syntactic-based browsing is envisioned primarily for the
benefit of the programmer’s discovery process, predicate-based
retrieval is envisioned as useful to both the programmer and the
environment. Where browsing allows the programmer only the
following of a single object at a time, the retrieval mechanism
enables the programmer and the environment to look for either
single or multiple objects that provide the designated
collections of predicates.

For the Inscape environment, Inquire serves a more specific
purpose: finding potential objects to be used as solutions to
detected problems in implementations. For example, in the
construction of implementations,5 Inscape enforces the
following general rule: every precondition and obligation must
be either satisfied within the implementation or propagated to
the encompassing interface. Inscape determines that the rule
has not been satisfied by the presence of non-empty
precondition ceilings and obligation floors. These non-empty
sets indicate that there are predicates that have not been
satisfied but which cannot be propagated to the interface.
Precondition ceilings and obligation floors represent semantic
errors — they are unsatisfied semantic requirements imposed
by the interface specifications. We intend to use Inquire’s
retrieval mechanism to find objects that provide predicates to
satisfy those ceilings and floors.

The advantage of Inquire over keyword retrieval mechanisms is
that, like LaSSIE, it provides inferencing as part of the

_ ____________________

5. The rules of composition and propagation (see [10] for a complete discussion)
use simple statements (assignment and function calls) as the basis for the
composition of complex language statements (sequence, selection and
iteration). Thus, the interface of an operation is derived from the interface of
its implementation sequence which is in turn derived from the interfaces of its
sequents, etc.



retrieval. Inquire uses Inscape’s underlying inferencing
mechanism to retrieve objects that have exactly the predicates
desired, objects with predicates that can be inferred from the
desired predicates (within the limits of the inferencing
mechanism), or objects with predicates from which to infer the
desired predicates (again, within the limits of the inferencing
mechanism). The advantage of Inquire over existing retrieval
mechanisms in general and LaSSIE in particular is that the
concepts involved in the retrieval are directly connected to the
objects of retrieval and evolve with the objects themselves.

In the succeeding three subsections, we consider three kinds of
retrieval entities, each of which has its own structure:
operations, data objects and modules. For each kind of entity,
we divide the retrieval into three distinct phases: query,
retrieval, and sorting (either independent of, or dependent on,
some context). We present first the query and retrieval
commands, and then discuss the possible orderings of the
results. In the interest of brevity, we present the commands for
the retrieval of operations in full detail and elide the
discussions of the commands for data objects and modules.

3.2.1 Operations

The specifications of operations in Inscape define the externally
visible behavior in terms of a set of assumptions6 (defined by a
set of preconditions) and a set of results, some of which are
considered successful and some of which are considered
exceptional. Results are defined by a set of postconditions
(predicates that are true as a result of executing the operation)
and a set of obligations (predicates that must eventually be
satisfied; for example, allocating a buffer entails eventually
deallocating it). Inquire thus focuses on the external behavior
as the conceptual means of finding operations.

OPERATION-QUERY-START — This command creates a
window containing a query template, into which the user
will enter preconditions, postconditions, and/or obligations
to specify the behavior of the operations to be found.
Relationships between objects and predicates are indicated
by using the same argument in multiple predicates.
Multiple occurrences of the same argument will trigger
unification in the query processing. After entering the
query, the user must choose one of the two commands
below to perform the query.

SHOW-OPERATIONS — This command is given after
entering a query into the window created by the
OPERATION-QUERY-START command. It finds all of
the operations that require all of the preconditions and
provide all of the postconditions and obligations specified

_ ____________________

6. Some of these preconditions may represent assumptions that must be true
(designated in the example below by [A]), some may represent assumptions
that are validated within the implementation (designated by [V] and which
result in exceptions if not true), and some may represent dependent
assumptions (represented by [D]) which are not known to be true until some
action is performed (such as a record being readable from the disc; these may
also result in exceptions).

in the query. It finds only cases where a single operation
provides all of the requested behavior.

SHOW-OPERATION-SETS — This command, like SHOW-
OPERATIONS, is given after entering a query. It finds all
‘‘minimal’’ sets of operations that require all of the
preconditions and provide all of the postconditions and
obligations specified in the query. In this case, ‘‘minimal’’
means that for each set, the removal of any operation from
the set would result in a set that does not satisfy at least one
of the specified predicates.

If, however, there is no way to satisfy the query completely,
resulting sets will be returned that satisfy the maximum
number of the designated predicates.

After the search has been completed, one may sort the list of
operations in various orders. Each ordering is, again,
intuitively based on some simple software engineering
principle and is intended to allow the programmer, or the
Inscape Environment itself, to examine possibilities ordered by
a desired ‘‘productiveness criterion’’.

MIN-OPERATIONS — Minimize the number of operations
needed to supply the desired set of predicates. This
ordering finds the ‘‘simplest’’ way of satisfying the desired
behavior.

MIN-PREDICATES — Minimize the total number of
predicates. This ordering finds the alternative that comes
closest to providing exactly what we asked for.

MIN-IMPORTS — Minimize the number of imports. This
ordering finds the alternative that capitalizes on currently
imported modules, or that requires the minimum number of
modules.

MIN-EXTRANEOUS — Minimize the number of extraneous
operations. This ordering finds the alternative that carries
the least ‘‘baggage’’. MIN-EXTRANEOUS differs from
MIN-OPERATIONS in that the latter is concerned only
with minimizing the number of operations to satisfy the
query while the former is concerned with minimizing the
number of operations implied or entailed by the operations
that satisfy the query. For example, because of
preconditions and obligations, one operation that satisfies
the desired set of predicates may require two other
operations to work properly while another may require only
one; the latter may be preferable to the former.

MIN-CHANGES — Minimize the number of changes to
existing code. This ordering finds the alternative that
requires the least disturbance to the context in which it is to
be used — that is, it tries to make as much use of what is
already known in the existing code.

The first two orderings are independent of any context other
than the search criteria while the last three require contexts of
various sorts. Minimizing the imports requires knowledge of
the context of the intended use; minimizing the operation
‘‘baggage’’ requires knowledge of the retrieved operation’s
context; and minimizing the number of changes requires the



context of the intended use site.

3.2.2 Data Objects

We use objects of the same type in varying ways and with
differing intent. As most type systems provide at best a rough
approximation to the intent with which objects are used,
Inscape provides for the addition of arbitrary properties to be
used as further type constraints and as specifications of
relationships to other data objects. Inquire thus focuses on the
specified properties of types, variables, and constants as the
means of retrieving data objects.

The retrieval operations OBJECT-QUERY-START, SHOW-
OBJECTS and SHOW-OBJECT-SETS are analogous to those
retrieval operations described above for operations. Similarly,
the sorting functions MIN-OBJECTS, MIN-PROPERTIES,
MIN-IMPORTS, MIN-EXTRANEOUS and MIN-CHANGES
are analogous to those on operations.

3.2.3 Modules

Finding modules can be done one of two ways: first, by doing
a query for either a data object or an operation and then using
the browsing mechanism to find the modules where those
objects are located; second, by using a query facility that
combines the two previous facilities.

Again, the retrieval operations MODULE-QUERY-START,
SHOW-MODULES and SHOW-MODULE-SETS are
analogous to those for operations. Similarly, the sorting
functions MIN-MODULES, MIN-CONCEPTS and MIN-
IMPORTS are also analogous to those on operations.

4. An Example of Browsing and Retrieval

Suppose that we want to write a program that creates some data
and saves it on secondary storage. We will walk through how
one might do this using Inquire’s browsing and retrieval
facilities. While the example is extremely simple and would in
reality only require perusal of the specification of the module
FileManagement,7 it is indicative of how one would use
Inquire in the context of building and evolving a large system.

To get started, we use the command FIND-DEFS and SHOW
to look at the specification for WriteRecord.

WriteRecord(
<in> fileptr fp,
<in> recordnumber rn,
<in> unsigned int n,
<inout> buffer b
) returns int status

Synopsis:
n bytes in the buffer b are written to record r in the file
reference by fp and the buffer is then deallocated.

Preconditions:
[A] ValidFilePtr(fp)

_ ____________________

7. See [9] for an elided version of the module specification. Full versions of the
module specification are available from the first author.

[A] FileOpen(*fp)
[A] BufferAllocated(b)
[V] BufferSizeSufficient(n)
[V] LegalRecordNumber(rn)
[D] RecordWriteable(*fp, RecordNumbered(rn))

{Successful result}
Determined by: status’ == 0
Synopsis:

The record was written successfully to the file.
Postconditions:

BufferSizeSufficient(n)
BufferDeallocated(b)
b’ == 0
LegalRecordNumber(rn)
RecordWritten(*fp, RecordNumbered(rn))

Obligations:
<none>

At this point we might well browse through the definitions and
uses of some of the predicates used in the specification using
FIND-DEFS, FIND-USES and SHOW. For example, let us
consider LegalRecordNumber. Using the browsing commands
we find the definition of that predicate.

LegalRecordNumber(recordnumber rn)
Definition:

and: 0 <= rn
rn <= MaxRecordNumber()

By chaining through definitions and uses of predicates we build
our conceptual model of the computational elements at our
disposal.

Another way in which we might find out about a particular
predicate (or domain abstraction, if you will) is to query for
objects that use that predicate as a property for either a type,
constant or variable. The OBJECT-QUERY-START
command produces a template to fill out with the desired
properties.

Properties:
LegalRecordNumber(NR)

We then issue the command SHOW-OBJECTS. Inquire
returns a list of data objects containing the types file,
record, and recordnumber. LegalRecordNumber is part
of the definition of RecordNumberUnique which is a property
of both file and record, and is the property of
recordnumber.

Type: primitive file
Properties for each file f:

FileNameUnique(f)
each record r:

RecordNumberUnique(f, r)
Synopsis:

The structure of the type file is abstracted away for
the interface, hence its primitive definition. An
abstract notion of a file is needed to correlate the
references of filename and fileptr.

Type: unsigned int recordnumber
Properties for each recordnumber rn:

LegalRecordNumber(rn)
Synopsis:

A record number is the subrange 0 . .
MaxRecordNumber of unsigned integers, and



denotes the corresponding record in a file.

After having explored various domain-specific abstractions
represented by the defined predicates, we return to finding out
how to use WriteRecord properly. The first two predicates
in the precondition list refer to the first parameter and indicate
that one needs a valid file pointer and an open file for the
operation to work properly. The quickest way to find out how
to satisfy these two predicates is to retrieve all the operations
that provide them. Using the command OPERATION-
QUERY-START, filling in the two predicates as
postconditions,

Preconditions:
<None>

Postconditions:
ValidFilePtr(FP)
FileOpen(*FP)

Obligations:
<None>

and issuing the command SHOW-OPERATIONS, Inquire
returns a list with only one operation, OpenFile. Browsing
OpenFile as we did WriteRecord provides the following
specification.

OpenFile(
<in> filename fn,
<out> fileptr fp
) returns int status

Synopsis:
If a file exists with the file name in fn, then the file is
opened for I/O and a pointer to the file is returned for
all further I/O operations.

Preconditions:
[V] LegalFileName(fn)
[V] FileExists(FileNamedBy(fn))

{Successful result}
Determined by: status’ == 0
Synopsis:

The file named in fn is open for i/o and fp
references that file.

Postconditions:
LegalFileName(fn)
FileExists(FileNamedBy(fn))
FileOpen(*fp’)
ValidFilePtr(fp’)
FileNamedBy(fn) == *fp’

Obligations:
FileClosed(*fp’)

We note that we need to have a legal file name for an existing
file for OpenFile to work properly. We then query for these
two predicates, LegalFileName and FileExists using SHOW-
OPERATION-SETS (as a variation in our exploration). This
results in a list of three operations: FileExists,
OpenFile, and CreateFile. We already know about
OpenFile, so we browse through CreateFile and find out
that it requires that the file not exist as a condition of proper
execution.

CreateFile(
<in> filename fn
) returns int status

Synopsis:

If no file exists with the file name in fn, then a file is
created with the file name specified by fn.

Preconditions:
[V] LegalFileName(fn)
[V] not: FileExists(FileNamedBy(fn))

{Successful result}
Determined by: status’ == 0
Synopsis:

A file has been created with the whose unique
name is the value of fn.

Postconditions:
LegalFileName(fn)
FileExists(FileNamedBy(fn))
FileEmpty(FileNamedBy(fn))
FileNameUnique(fn)

Obligations:
<none>

We then query for the predicate not FileExists and get back the
list of one operation, FileExists. Thus, we see that we
must determine by means of FileExists whether the file
exists or not and either open the file if it does, or create and
then open the file if it does not exist.

There is one remaining problem. Since we have opened the file,
we are obligated to close it. Querying for the postcondition
FileClosed yields the solution CloseFile.

5. Summary

Supporting the use and reuse of software components is a
difficult problem. Existing systems have, in general,
emphasized efficient retrieval at the expense of
conceptualization and provided little help with selection and
correct use. In our experiment in Inquire we have taken a
different approach to these tradeoffs: we have emphasized
conceptualization considerations with the attendant advantage
of significant support for selection and correct use.

The contributions of our work in Inquire are tightly coupled
with those of Inscape and are dependent on them for its
leverage in providing a solution to the problems of component
use and reuse. Inquire’s novel approach derives from the facts
that

• The formal module interface specifications are the medium
for conceptualization of system components;

• Conceptualization evolves as the system evolves because of
the environmentally managed interconnection between the
interfaces (that is, the conceptualization of the components)
and the implementation;

• Retrieval, selection and correct use are based on the
interface specifications (that is, on the conceptualization
medium); and

• Coarse-grained discovery and conceptualization are
extended via browsing along not only data and control
flow, but also predicate flow.

The browsing and operation query, retrieval, and default
sorting facilities (for the successful case,8 not for exceptions)



have been implemented in the Inscape Prototype. The query,
retrieval and sorting facilities for data objects and modules
have not yet been done because the simplified prototype
specification language has only primitive facilities for data
objects (their type names, but no properties). The query and
retrieval mechanism works well because of the prototype’s
simplified and decidable specification logic. This
simplification of the specification logic does however limit the
expressiveness of the predicates in providing conceptualization.

The next step is to port the Inquire prototype to the full Instress
(module interface specification language) Editor. This porting
entails extending Inquire to include the full set of data object,
operation (with exceptions), and module facilities. For Inquire
to work using the full specification logic, we will need to
improve the efficiency and richness of the inference mechanism
in Inscape.

References

[1] D. G. Belanger, R. J. Brachman, Y. F. Chen, P. T.
Devanbu, and P. G. Selfridge. ‘‘Toward a Software
Information System’’, AT&T Technical Journal, 69:2 (
March/April, 1990). pp 22-41.

[2] Y. F. Chen, and C. V. Ramamoorthy. ‘‘The C
Information Abstractor’’, Proceedings of COMPSAC,
October 1986, Chicago Il.

[3] Premkumar Devanbu, Ronald J. Brachman, Peter
Selfridge, Bruce W. Ballard. ‘‘LaSSIE -- A
Knowledge-Based Software Information System’’,
Proceedings of The 12th International Conference on
Software Engineering, 26-30 March 1989, Nice,
France.

[4] W. B. Frakes and P Gandel. ‘‘Representing Reusable
Software’’, Information and Software Technology,
November 1990.

[5] W. B. Frakes and B. A. Nejmeh. ‘‘An Information
System for Software Reuse’’, Proceedings of the Tenth
Minnowbrook Workshop on Software Reuse, 1987. pp
142-151.

[6] J. V. Guttag, J. J. Horning, and J. M. Wing. ‘‘The
Larch family of specification Languages’’, IEEE
Software 2:5 (September 1985). pp 24-36.

[7] Charles W. Krueger. ‘‘Software Reuse’’ ACM
Computing Surveys 24:2 (June 1992). pp 131-184.

[8] Dewayne E. Perry. ‘‘Software Interconnection
Models’’, Proceedings of The 9th International
Conference on Software Engineering, March 30 - April
2, 1987, Monterey CA. pp 61-69.

[9] Dewayne E. Perry. ‘‘The Inscape Environment’’,
Proceedings of The 11th International Conference on

_ ____________________

8. In the prototype, there is only a single result specified. In the full
specification language, one may specify any number of successful and
exceptional results.

Software Engineering 15-18 May 1989, Pittsburgh PA.
pp 2-12.

[10] Dewayne E. Perry. ‘‘The Logic of Propagation in the
Inscape Environment’’, Proceedings of SIGSOFT ’89:
The Third Testing Analysis and Verification
Symposium, December 1989, Key West FL. Software
Engineering Notes 14:8 (December 1989).

[11] Dewayne E. Perry and Steven S. Popovich. ‘‘Inquire:
Predicate-Based Use and Reuse’’. Specification Driven
Tools Conference, AT&T Bell Laboratories, October
1989.

[12] Dewayne E. Perry and Carol Stieg. ‘‘Software Faults in
Evolving a Large, Real-Time System: a Case Study’’,
Proceedings of the European Software Engineering
Conference — 1993, Garmisch, Germany, September
1993.

[13] Dewayne E. Perry and Alexander L. Wolf.
‘‘Foundations for a Study of Software Architecture’’,
ACM SIGSOFT Software Engineering Notes 17:4
(October 1992). pp 40-52

[14] Ruben Prieto-Diaz. ‘‘Classification of Reusable
Modules, in Software Reusability. Volume I. Concepts
and Models, edited by Ted J. Biggerstaff and Alan J.
Perlis. New York: ACM Press, 1989. pp 99-123.

[15] Mikael Rittri. ‘‘Using Types as Search Keys in
Function Libraries’’ FPCA ’89. The Fourth
International Conference on Functional Programming
Languages and Computer Architecture, Imperial
College, London, 11-13 September 1989. pp 174-183.

[16] Eugene J. Rollins and Jeannette M. Wing.
‘‘Specifications as search keys for software libraries’’,
Conference on Functional Programming Languages
and Computer Architectures, September 1989. pp 174-
183.

[17] Colin Runciman and Ian Toyn, ‘‘Retrieving re-usable
software components by polymorphic type’’. FPCA
’89. The Fourth International Conference on
Functional Programming Languages and Computer
Architecture, Imperial College, London, 11-13
September 1989. pp 166-173.

[18] P. Selfridge. ‘‘Integrating Code Knowledge with a
Software Information System’’. Proceedings of the 5th
Annual KBSA Conference, Syracuse, NY, Sept. 1990.

[19] Joseph L. Steffen. ‘‘Interactive Examination of a C
Program with Cscope’’, USENIX Winter Conference
Proceedings, Dallas 1985, pp 170-175.

[20] W. Teitelman. The INTERLISP Reference Manual,
Bolt, Beranek and Newman, 1974.

[21] Amy Moormann Zaremski and Jeannette M. Wing.
‘‘Signature Matching: A Key to Reuse’’, ACM
SIGSOFT’93: Foundations of Software Engineering,
1993 (FSE93), Redondo Beach, CA, December 1993.


