
Maintaining Consistent, Minimal

Con�gurations

Dewayne E. Perry

Software Production Research, Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974 USA

dep@research.bell-labs.com

Abstract. An important ingredient in meeting today's market demands

is the ability to respond quickly to a customer's changing needs. One way

of responding to this pressure is to capitalize ones' software assets by
means of generic, domain|speci�c, or product line architectures. Within

that context, an extremely important aspect of meeting those changing

needs is the ability to dynamically recon�gure a system rather than re-
sorting to the current individual customization. Given cost pressures,

it is useful to be able to do this recon�guration as e�ciently as possi-

ble, loading and keeping only what is needed. We provide algorithms for
adding only the minimal and removing the maximal sets of components.

We also note that in addition to semantic consistency of con�gurations,

we must now also consider the architectural consistency of the evolving
con�gurations.

1 Introduction and Context

One of the major trends in building modern software{based systems is that of
domain{speci�c, generic, or product{line architectures [1]. The underlying reason
for this trend is the need to capitalize on both hardware and software assets.
De�ning a generic, domain{speci�c, or product{line architecture enables the
developers to de�ne both the range of products buildable from that architectural
style [10] and the assets needed for their implementations.

These assets are divided into three kinds: those which are unique to each
architectural instance, those for which the implementation is shared across all
architectural instances and those for which the shape is shared across all ar-
chitectural instances. In the last case, it is the de�nition of the component's
interface and behavior that is important even though its implementations may
vary from instance to instance. It is this set of components with which we build
the various architectural instances.

In this paper we look speci�cally at aspects of a generic architecture and
consider the range of the parameters that are needed within the applicable range
of products. Currently each product is built individually according to customer
speci�cations. When the customer's needs change and the speci�c products need
to be changed to reect those changes in requirements, a new product has to be
built for those altered speci�cations.



The goal, then, is to build a generic set of products each of which may be
individualized according to customer requirements and altered dynamically as
customer needs change. From the hardware point of view, the various inter-
changeable components must be standardized and plug compatible. From the
software point of view, there are two interdependent things needed to achieve
this goal: dynamic (re{)con�guration and a distribution independent generic
software architecture.

Underlying both of these is the need for an object request broker (ORB) [6].
An ORB provides the necessary substrate for dynamically changing the software
con�guration: the new components can be dynamically registered to replace
those components that are no longer used. The ORB also provides us with
the means of making our architecture distribution independent since it hides
the locations of the various components and acts as the intermediary in the
communication among the various software components.

An important consideration in implementing dynamic (re{)con�guration is
the system cost. To keep these costs as competitive as possible the hardware
components will be those that are just su�cient to support the software driving
the products. This means that, among other things, that system storage space is
likely to be limited to just that needed for each class of instances in the generic
architecture.

Because of this storage limitation we cannot a�ord to accumulate software
components that have been replaced in recon�guring the system and thus are no
longer used. We need a way to maintain a con�guration of only those components
that are needed for the current con�guration. Moreover, to minimize the time
needed for dynamic recon�guration, we want to load only those components that
are needed but not already available in the system.

In the remainder of the paper, we present the algorithms for removing com-
ponents no longer needed and for loading only those components that are not
already present in the current con�guration. In short, we present a way of main-
taining the minimal con�guration for any de�ned set of architectural compo-
nents. We also note that in addition to the necessity of maintaining the semantic
consistency of the new con�guration we must maintain the architectural consis-
tency. Finally, we summarize the results of our work.

2 Minimal Con�gurations

The basis for both the addition and removal of recon�gured components is a
dependency graph. We �rst discuss the dependencies that we exploit and then
present the minimal addition of components for recon�guration and the maximal
removal of components not longer in the new con�guration.

2.1 Component Dependencies

Let the set Comp be the set of all components that can possibly be used to
construct an architectural instance of our generic architecture. The set Dep is a



set of tuples (a; b) where a 2 Compandb 2 Comp | that is, a is dependent on
b. Thus, Dep is the subset of Comp�Comp that represents the dependencies of
each element in Comp. For example, in a system built using C, the dependencies
are de�ned by the #include statements.

Let TC(ci) where ci 2 Comp be the transitive closure of ci in Dep | that is,
TC(ci) is the transitive closure of dependencies de�ned in Dep beginning with
component ci.

For convenience, let us consider the set of basic architectural components,
AComp, as bases for de�ning con�gurations. Since they are in Comp and their
dependencies are de�ned in Dep, we su�er no loss of generality in the ensuing
discussion.

An architecture con�guration AC is a set fac1:::acng where aci 2 AComp |
that is, a con�guration is a set of architectural components. A build con�guration
BC is the union of the transitive closures of each element in an architectural
con�guration | BC(AC) =

S
n

i=1
TC(aci) where aci 2 AC

2.2 Minimal Addition

Given an architectural con�guration Current and a new architectural con�gu-
ration New to be added to con�guration Current, the following is the algorithm
for determining the minimal set of components to dynamically add to the existing
system. Note that the addition of a single component reduces to an architectural
con�guration with one element.

MinimumAdd = BC(New) �BC(Current)

Current = Current [New

Thus, MinimumAdd is the set of components that are needed in the new
build con�guration determined by the architectural con�guration New that are
not already in the build con�guration determined by Current.

2.3 Maximal Removal

Given an architectural con�guration Current and an architectural con�guration
Remove to be removed from the con�guration Current, the following is the
algorithm for determining the maximal set of components to dynamically remove
from the existing system. Note that the removal of a single component reduces
to an architectural con�guration with one element.

MaximalRemove = BC(Remove) � BC(Current�Remove)

Current = Current�Remove

Thus,MaximalRemove is the set of components that are no longer needed in
the build con�guration determined by the architectural con�guration Current�
Remove.



2.4 Replacement

For replacing one architectural con�guration for another, simply do the addition
�rst to get the minimal set of build components to add to the system and the
removal second. This ordering of operations is needed to avoid removing and
adding the same component.

3 Architectural Consistency

In previous work, we concentrated on the semantic consistency of building and
evolving con�gurations from components [7] [8] [9]. In addition to having to
reason about the semantic consistency of the dynamic recon�gurations, we must
also reason about the architectural consistency of the instances with respect to
the speci�ed generic architecture.

Perry and Wolf [10] proposed a model for software architecture that we use to
consider the notion of consistency between a generic architecture and its various
instances.

Software Architecture = f Elements, Form, Rationale g

Architectural elements are either processing, data or connecting elements; the
form speci�es the properties and relationships of and among these elements; and
the rationale provides the justi�cation for both the set of elements and the form
of the architecture.

We consider a generic architecture to be an architectural style | that is
it is an abstraction from a set of speci�c architectures. A typical approach in
de�ning an architectural style abstracts various kinds of elements by de�ning
their properties and relationships.

We note the following di�erent kinds of formal aspects that may be used to
de�ne an architectural style:

{ properties of individual elements
{ relationships among elements
{ constraints on properties

{ constraints on relationships

It is these properties, relationships and constraints that must be maintained by
each instance of the desired generic architecture. Some examples of work that
utilizes constraints for various forms of reasoning about architectures are [5] [2]
[3] [4].

4 Summary

We have provided an approach that minimizes the components that must be
added and maximizes the components to be removed in evolving a con�guration
dynamically. The current implementation consists of the use of shell scripts and



the sort and join operations. This approach is not very e�ecient but for the time
being works quite satisfactorily. Should a more e�cient approach be needed, we
have the design for an approach in which we generate a set of programs that are
then compiled and executed.

References

1. David Garlan and Dewayne E. Perry. \Introduction to the Special Issue on Software

Architecture", IEEE Transactions on Software Engineering, 21:4 (April 1995).

2. Je� Magee and Je� Kramer. \Dynamic Structure in Software Architectures", Pro-
ceedings of the Fourth ACM SIGSOFT Symposium on the Foundations of Software

Engineering, San Francisco, CA, October 1996. pp. 3-14

3. Daniel Le Metayer. \Software Architecture Styles as Graph Grammars", Proceed-
ings of the Fourth ACM SIGSOFT Symposium on the Foundations of Software

Engineering, San Francisco, CA, October 1996. pp. 15-23
4. Nenad Medvidovic, Payman Oreizy, Jason E. Roberts and Richard N. Taylor. \Us-

ing Object{Oriented Typing to Support Architectural Design in the C2 Style", Pro-

ceedings of the Fourth ACM SIGSOFT Symposium on the Foundations of Software

Engineering, San Francisco, CA, October 1996. pp. 24-32.

5. Naftaly H. Minsky. \Law{governed systems", The IEE Software Engineering Jour-

nal, September 1991.
6. Object Management Group. \The Common Object Re-

quest Broker: Architecture and Speci�cation", Revision 2.0, July 1995, available

from http:www.omg.orgcorbask.htm.
7. Dewayne E. Perry. \Software Interconnection Models", Proceedings of the 9th In-

ternational Conference on Software Engineering, Monterey, CA, March 1987. pp

61-69.
8. Dewayne E. Perry. \Version Control in the Inscape Environment", Proceedings of

the 9th International Conference on Software Engineering, March 30 - April 2, 1987,

Monterey CA.
9. Dewayne E. Perry, \System Compositions and Shared Dependencies", Proceedings

of the ICSE'96 SCM{6 Workshop, Berlin Germany, March 1996.

10. Dewayne E. Perry and Alexander L. Wolf. \Foundations for the Study of Software
Architecture", ACM SIGSOFT Software Engineering Notes, 17:4 (October 1992).

This article was processed using the LaTEX macro package with LLNCS style


