
Parallel Changes in Large Scale Software Development:

An Observational Case Study�

Dewayne E. Perry Harvey P. Siy, Lawrence G. Votta

Software Production Research Department Software Production Research Department

Bell Laboratories Bell Laboratories

Murray Hill, MH 07974 USA Naperville, IL 60566 USA

+1 908 582 2529 +1 630 224 6830, +1 630 713 4612

dep@research.bell-labs.com fhpsiy,vottag@research.bell-labs.com

ABSTRACT

An essential characteristic of large scale software devel-

opment is parallel development by teams of developers.

How this parallel development is structured and sup-

ported has a profound e�ect on both the quality and

timeliness of the product. We conduct an observational

case study in which we collect and analyze the change

and con�guration management history of a legacy sys-

tem to delineate the boundaries of, and to understand

the nature of, the problems encountered in parallel de-

velopment. Speci�cally we focus on potentially conict-

ing changes that arise for a variety of reasons in a va-

riety of contexts. We then use this understanding in

two ways: to evaluate various alternative methodical

and technical support for parallel development in terms

of their e�ectiveness in solving these problems; and to

suggest useful avenues of process, tool and management

investigations.

KEYWORDS

Change management, parallel/concurrent changes, con-

�guration management, parallel versions, merging inter-

fering and non-interfering versions

1 INTRODUCTION

In any software project with more than one software

developer, parallel development is a basic fact of life:

changes are made to the software in parallel. This basic

fact is compounded by four essential problems in soft-

ware development[1]: evolution, scale, multiple dimen-

sions of system organization, and distribution of knowl-

edge.

� Evolution compounds the problems of parallel de-

velopment because we not only have parallel devel-

�Research supported in part by NSF Grant SBR-9529926 to

the National Institute of Statistical Sciences.

opment within each release, but among releases as

well. For example, it is not unusual for a software

product to have three or more releases concurrent

at one time. This of course compounds the com-

pounding.

� Scale compounds the problems by increasing the

degree of parallel development and hence increasing

both the interactions and interdependencies among

developers.

� Multiple dimensions of system organization1 com-

pounds the problems by preventing tidy separa-

tions of development into independent work units.

For example, the system under investigation is or-

ganized into a design structure of modules and �les.

However, another dimension of organization exists

that does not coincide with that structure, namely

features. Features span multiple modules and �les

and may also encompass hardware.

� Distribution of knowledge compounds the problem

by decreasing the degree of awareness in that di-

mension of knowledge that is distributed. Here

there are two possibilities of knowledge centraliza-

tion: the knowledge of a part of the system, or the

knowledge of (part of) the problem to be solved.

If one centralizes knowledge of the system (for ex-

ample, by �le ownership where only the �le owner

makes changes) then one must distribute knowl-

edge of the problems to be solved over the �le own-

ers. Conversely, as is done here, if one centralizes

knowledge of the problems (for example, by feature

ownership) then one must distribute the knowledge

of the system over the feature owners.

The basic problem, then, is that we have parallel

changes made to a software system by multiple people.

Speci�cally we have parallel changes made to the same

�les by multiple developers and these changes represent

prima facie interactions that may interfere with each

1By system organization, we mean the hardware and software

components which make up the product. It is not to be confused

with the developers' organization.

1



other. While there are also interactions represented by

changes made to multiple �les, our focus here is on the

changes to the single �le case.

The hard problem is how to manage this phenomena.

How do we support the people doing these parallel

changes by organizational structures, by project man-

agement, by process, and by technology? We are partic-

ularly interested in the problems of technology support.

Before we can adequately answer these questions we

need to understand the depth and breadth of the prob-

lem. To explore the dimensions of this phenomena, we

take a look at the history of a subsystem of Lucent Tech-

nologies' 5ESS R telephone switch [12] to understand the

various aspects of parallel development in the context of

a large software development organization and project.

We use an observational case study method to do this

empirical investigation. We describe this study as obser-

vational since it captures many important quantitative

properties associated with the problem of concurrent

changes to software. We consider it to be a case study

because it is one speci�c instance of the observed phe-

nomena. Central to this technique is an extended series

of repeated observations to establish credibility. In this

way, the method is similar to the ones used in Astron-

omy and the social sciences [7]. Finally, a theory is built

using these observations (e.g., with grounded theory [4])

to make predictions (hypotheses) that are tested with

future studies.

Our strategy is to illustrate the phenomena of system

changes in the context of a large-scale, real-time system

and a large-scale development. Our primary hypothesis,

if we can be said to have one at all beyond the desire to

understand the basic phenomena of parallel changes, is

that current technical support has not been adequately

grounded in a deep understanding of this problem in

large scale software development.

We �rst summarize the various kinds of tools that are

available to support parallel development. We then de-

scribe the context of this study: the characteristics of

the organizational, process and development environ-

ment and the characteristics of the subsystem under in-

vestigation. We do this to provide a background against

which to consider the phenomena of parallel changes.

Having set the context for the study, we present our

data and analyses of the parallel change phenomena and

discuss the construct, internal and external validity of

our study. Finally, we summarize our �ndings, evaluate

the various means of technological support in the light

of our results, and suggest areas for further research and

development.

2 RELATED WORK

In terms of technical support for parallel changes, there

are two di�erent strands of research that are relevant:

con�guration management and program analysis re-

search.

2.1 Con�guration Management

Classic con�guration management systems in wide-

spread use today, SCCS [13] and RCS [14], induce a

sequential model of software development. The lock-

ing for an edget operation guarantees that only one user

can change a particular �le at a time and blocks other

developers from making changes until an edput opera-

tion has been done thereby releasing the lock on the

�le. There is no checking for the presence of conicts

between successive changes. The purpose of the con�g-

uration management system is to guarantee that, like a

database, no changes are lost due to race conditions.

One of the standard features of even the classic con-

�guration management systems that enables developers

to create parallel versions is the branching mechanism.

The problem, however, is not in creating parallel ver-

sions, but in �guring out how to merge them back into

a single version. Mahler [11] makes a distinction be-

tween temporary and permanent variants. Permanent

variants are \branches in the product development path

that have their own life cycle". Temporary variants on

the other hand are meant to be merged eventually and

only need to exist for the time needed until merging.

PureAtria's ClearCase R [10] provides support for auto-

matic merging of up to 32 versions. This support con-

sists of automatically �guring out the best sequence for

merging the changes.

An automatic merge facility can help with

the mechanics of merging source code changes.

A merge too that knows the common ances-

tor of the versions being merged can generally

merge with little or no human interaction. Ex-

perience with DSEE and with ClearCase has

shown that over 90% of changed �les can be

merged without asking any questions. The

merge tool asks the user to resolve a conict in

the other cases. In about 1% of the the merge

tool inappropriately makes an automatic de-

cision, but nearly all of those cases are easily

detected because they result in compiler syn-

tax errors. [10]

This data came from an in-house merge of the Win-

dows port of ClearCase with their UNIX version [9].

The merge involved several thousand �les resulting from

nine to twelve months of diverging development e�ort

by about 10 people.

2



The Adele Con�guration Manager [3] incorporates the

notion of workspaces into con�guration management to

provide support for change management. Within a

workspace a lock can be set on a �le which causes the

transparent creation of a copy (referred to as dynamic

versioning). Releasing the lock causes the merging of

the dynamic copies. Coordination control is provided

amongst the workspaces (WSs) because

... object merging is not a perfect mecha-

nism. Inconsistencies may arise from an object

merger; the probability of problematic mergers

rapidly increases with the number of changes

performed in both copies. Were mergers to be

performed only at transaction commit, most

of them would not be successfully performed.

Frequent mergers, at some well de�ned points,

are needed to maintain two cooperating WSs

in synch. [3]

Thus Adele requires frequent updating of the changes

being made in the other workspaces to keep the various

parallel versions more or less in synch.

2.2 Program Analysis

The other strand of research is that of Horwitz, Prins

and Reps' [6] work on integrating noninterfering ver-

sions. They describe the design of a semantics-based

tool that automatically integrates noninterfering ver-

sions, given the base version and two derived but paral-

lel versions. The work makes use of dependence graphs

and program slices to determine if there is interference

and, if not, to determine the integration results.

2.3 Empirical Evaluation

In neither Adele nor Reps, Prins and Horwitz is any

data o�ered in support of their approaches. In the Adele

case, we believe the motivation to have come from usage

experience of the sequentialization of development. In

the case of Horwitz, Prins and Reps, we believe the

motivation to be that of advancing basic science by the

investigation of an interesting but di�cult problem.

The data o�ered in support of ClearCase is the only data

we know of that is relevant to the merging of parallel

versions and that data, as published, must be considered

anecdotal.

3 STUDY CONTEXT

This study is one of several strands of research being

done in the context of the Code Decay Project [2],

a multi-disciplinary and multi-institution project sup-

ported by NSF.

We describe �rst the characteristics of the subsystem

under study, then the change and con�guration man-

agement data available to the Code Decay Project, and

�nally the change and con�guration management pro-

cesses.

3.1 The Subsystem Under Study

The data for this study comes from the complete change

and quality history of a subsystem of the Lucent Tech-

nologies' 5ESS. This data consists of the change and

con�guration management history representing a period

of 12 years from April 1984 to April 1996. This subsys-

tem is one of 50 subsystems in 5ESS. It was built at

a single development site. The development organiza-

tion has undergone several restructuring over the years

and its size has varied accordingly, reaching a peak of

200 developers and eventually decreasing to the current

50 developers. There are two main product o�erings,

one for US customers and another for international cus-

tomers. Historically, the two products have separate

development threads although they do share some com-

mon �les.

3.2 The Change and Con�guration Management

Data

Lucent Technologies uses two related systems for man-

aging the evolution of 5ESS: a change management

system, ECMS [15], to initiate and track changes to

the product, and a con�guration management system,

SCCS [13], to manage the versions of �les needed to

construct the appropriate con�gurations of the product.

SCCS embodies a traditional library metaphor where

source �les are checked out for editing and then checked

back in[5].

All changes are handled by ECMS and are initiated

using an Initial Modi�cation Request | an IMR |

whether the change is for �xing a fault, perfecting or

improving some aspect of the system, or adding new

features to the system. Thus an IMR represents a prob-

lem to be solved and may solve all or part of a feature.

Features are the fundamental unit of extension to the

system and each feature has at least one IMR associated

with it as its problem statement.

Associated with each IMR are Modi�cation Requests |

MRs | which represent the work to be done within

individual modules (modules are made up of �les, and

subsystems are made up of modules). Thus, an MR

represents all or part of a solution to a problem. A

variety of information is associated with each IMR and

MR. For example, for each MR, ECMS includes such

data as the date it was opened, its status, a short text

abstract of the work to be done, and the date it was

closed.

When a change is made to a �le in the context of an

MR, SCCS keeps track of the actual lines added, edited,

3



RELEASE TIMELINE

R
E

LE
A

S
E

DELTAS PER MONTH

4/84 4/85 4/86 4/87 4/88 4/89 4/90 4/91 4/92 4/93 4/94 4/95 4/96

D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11

I1
I2
I3
I5
I6
I7
I8
I9

I10
I11
I12
I13
I14
I15

Figure 1: Timeline of parallel releases. Each histogram represents work being done for one release of the software.

The top and bottom halves show releases for the international and domestic products, respectively.

or deleted. This set of changes is known as a delta.

For each delta, the CM database records its date, the

developer who made it, and the MR where it belongs.

3.3 The 5ESS Change Process

To understand the change and con�guration manage-

ment data, it is helpful to know how changes were made

by the developers. Problems in the software are written

up and sent to the development organization as IMRs.

Requests for new features are also sent to the develop-

ment organization as sets of IMRs. IMRs are assigned

to a number of developers dependent on the amount

of work estimated to be done. To solve an IMR, sev-

eral speci�c sets of changes are usually required. Each

functionally distinct set of changes are assigned an MR

number.

The actual process of editing a �le usually goes as fol-

lows. At any given time, a �le may be opened in SCCS

for reading by several developers working on di�erent

MRs and quite possibly, di�erent IMRs and features.

Since a developer may not know for certain that some-

one else may be modifying the �le, he �rst makes what

may be a dirty read. The objective is to get a reason-

ably recent snapshot of the code in order to understand

it and determine what changes need to be made on it.

The developer then tries out his changes on the dirty

copy until he is satis�ed with it. At this point, he then

checks out the current code (locking it is part of the

checkout | obviously, if the �le is already locked he or

she must then wait for it to be unlocked) and applies

his changes to the current code. A crucial point here

is that he has to make sure his changes do not conict

with other recent changes put in the code. There is no

guarantee of absence of conict. Finally, the modi�ed

code is checked back in. This last step is recorded by the

con�guration management system in the form of deltas.

When all the changes required by an MR have been

made, the MR is closed after all approval has been ob-

tained for all the dependent units. Similarly, when all

the MRs for an IMR have been closed, the IMR itself is

closed, and when all IMRs implementing a feature have

been closed the feature is completed.

4 DATA AND ANALYSIS

In the subsequent sections we make liberal use of his-

tograms to illustrate the various aspects of parallel

changes in the study of this subsystem. We do this

to provide a clear picture of the data that would not

be evident if we were to report merely the minimum,

mean, and maximum of each distribution. It is impor-

tant to notice that the tail of each distribution is long

and falls o� more slowly than the Poisson or binomial

distributions (classical engineering distributions). This

is extremely important to consider in designing tools: if

a tool is designed around the mean value, it will not be

particularly useful for the critical cases that need the

support the most, namely, those cases represented by

the tail of the distribution.

4.1 Levels of Parallel Development

The 5ESS system is maintained as a series of releases,

with each release o�ering new features on top of the ex-

4



TIME

R
E

LE
A

S
E

FEATURE DENSITY

6/88 9/91

D1

D2

D3

D4

D5

D6

D7

I2

I3

I6

I7

I10

TIME

IMR DENSITY

6/88 9/91

TIME

MR DENSITY

6/88 9/91

Figure 2: Concurrent development activities in

the development interval of release I6. These pan-

els show the activities being conducted in parallel at the

feature, IMR, and MR levels during the development

interval for release I6. It also shows activities for other

releases during the same time period.

0 1 2 3 4 5 6 7 8 9 10 >10

0
5

10
15

20
25

NUMBER OF DEVELOPERS ON THE SAME FILE IN THE INTERVAL OF I6

P
E

R
C

E
N

T
A

G
E

 O
F

 F
IL

E
S

25%
25.7%

14.1%

9.7%

5.8%

3.6%
2.5%

1.9% 2.1%
1.5% 1.1%

7%

Figure 3: Distribution of number of developers

modifying each �le in the development interval

of release I6. Bar N shows the percentage of �les which

were worked on by N developers during the development

interval of release I6.

isting features in previous releases. The timeline on Fig-

ure 1 shows the number of deltas applied every month

to each release of the 5ESS subsystem under study. The

top half shows the international releases (labeled I1{I15)

and the bottom shows the domestic ones (labeled D1{

D12). It shows that for each product line, there may be

3{4 releases undergoing development and maintenance

at any given time.

Within each release shown in Figure 1, multiple features

are under development. The overlapping time schedule

of successive releases suggest that features for di�erent

TIME

O
P

E
N

 M
R

s

0
2

4
6

8
10

NUMBER OF ACTIVE MRs PER DAY

4/84 4/85 4/86 4/87 4/88 4/89 4/90 4/91 4/92 4/93 4/94 4/95 4/96

TIME

A
C

T
IV

E
 P

R
O

G
R

A
M

M
E

R
S

0
2

4
6

8
10

NUMBER OF ACTIVE PROGRAMMERS PER DAY

4/84 4/85 4/86 4/87 4/88 4/89 4/90 4/91 4/92 4/93 4/94 4/95 4/96

TIME

A
C

T
IV

E
 IM

R
s

0
2

4
6

8
10

NUMBER OF ACTIVE IMRs PER DAY

4/84 4/85 4/86 4/87 4/88 4/89 4/90 4/91 4/92 4/93 4/94 4/95 4/96

TIME

A
C

T
IV

E
 F

E
A

T
U

R
E

S

0
2

4
6

8
10

NUMBER OF ACTIVE FEATURES PER DAY

4/84 4/85 4/86 4/87 4/88 4/89 4/90 4/91 4/92 4/93 4/94 4/95 4/96

Figure 4: Activity pro�le for one �le. The top panel

shows the number of open MRs modifying this �le over

time. The second panel show the number of develop-

ers with open MRs modifying this �le. The third and

fourth panels show the number of IMRs and features,

respectively, that are involved.

releases are being developed almost concurrently. Fig-

ure 2 is a timeline showing the density of new feature

development during the development interval of release

I6. At its peak, there was work on about 60 features. It

not only shows that multiple features are being devel-

oped concurrently for release I6, but also shows that 8

other releases are doing new feature development.

Figure 2 also shows the density of IMRs and MRs devel-

oped for release I6 as well as other releases in the same

interval.

4.2 E�ects of Parallel Development on a File

Figure 2 does not show how these parallel activities in-

teract with each other, particularly in the case when

several of them make changes to the same �le. In Fig-

ure 3, we see that in the interval when release I6 was

being developed, about 50% of the �les are modi�ed by

more than one developer. Note also that the tail of the

distribution is signi�cant here | 25% of the �les are

modi�ed by four or more developers.

5



    

P
R

O
G

R
A

M
M

E
R

PROGRAMMER ACTIVITY

8/
5/

89

8/
6/

89

8/
7/

89

8/
8/

89

8/
9/

89

8/
10

/8
9

8/
11

/8
9

8/
12

/8
9

8/
13

/8
9

8/
14

/8
9

8/
15

/8
9

8/
16

/8
9

8/
17

/8
9

8/
18

/8
9

8/
19

/8
9

8/
20

/8
9

P9

P8

P7

P6

P5

P4

P3

P2

P1

    

A
C

T
IV

E
 P

R
O

G
R

A
M

M
E

R
S

0
2

4
6

8
10

ACTIVE PROGRAMMERS

8/
5/

89

8/
6/

89

8/
7/

89

8/
8/

89

8/
9/

89

8/
10

/8
9

8/
11

/8
9

8/
12

/8
9

8/
13

/8
9

8/
14

/8
9

8/
15

/8
9

8/
16

/8
9

8/
17

/8
9

8/
18

/8
9

8/
19

/8
9

8/
20

/8
9

Figure 5: A closer look at developer activity. This

is a closer look at the developer activity during the bus-

iest period (8/89). Each line in the top panel shows

MRs being worked on by 9 developers during this pe-

riod. The X's indicate when they made deltas into the

�le. The solid line in the bottom panel shows the num-

ber of developers who have open MRs on each of those

days. It is a magni�cation of the developer panel from

the previous �gure. The dashed line shows the number

of developers who actually made deltas on each day.

To illustrate further, Figure 4 shows the various levels

of activity going on for a certain �le. This clearly shows

that several developers may be working on the same �le

at the same time. Figure 5 is a closeup of the period

with the highest activity. It shows that at one time, as

many as 8 developers have open MRs a�ecting this �le

and as many as 4 modi�ed the �le on the same day.

4.3 Interfering Changes

Upon analyzing the available delta data, we found that

12.5% of all deltas are made to the same �le by di�er-

ent developers within 24 hours of each other. Given this

high degree of parallel development, sometimes changes

by one developer may interfere with changes made by

another developer by physically overlapping them. For

example, Figure 6 traces several versions of the �le ex-

amined in Figure 4 as 5 deltas were applied to it during

a 24-hour period. Developer A made 3 deltas, the �rst

two of which did not a�ect this fragment of code. Then

developer B put in changes on top of A's changes. Fi-

nally some of B's changes were modi�ed by developer C

on the same day.

Across the subsystem, 3% of the deltas made within

24 hours by di�erent developers physically overlap each

others' changes. Note that physical overlap is just one

way by which one developer's changes can interfere with

PROGRAM LINE NUMBER (MAGNIFIED VIEW)

D
E

LT
A

 -
 D

E
V

E
LO

P
E

R

7860 7880 7900 7920 7940

5 C

4 B

3 A

2 A

1 A

Base

Figure 6: Lines changed per delta. Each horizontal

line represents a version of the �le as it was changed by

a delta (denoted 1{5). The y-axis also encodes the de-

veloper who made the delta (denoted A{C). The delta

sequence is read from top to bottom. The lines con-

necting the horizontal lines show where lines have been

changed from one version to the next. An upright trian-

gle shows where new code was inserted while an inverted

triangle shows where code was deleted. The trapezoids

show modi�cations of blocks of code. Note that this

�gure only shows a fragment of each program version,

approximately from lines 7850-7950.

others. We believe that many more conicts arise as

a result of parallel changes to the same data ow or

program slice.

4.4 Analysis of Parallel Features

0 10 20 30 40 50 60 70 80 90

0
20

0
40

0
60

0
80

0
10

00

NUMBER OF FEATURES PER DAY

 N
U

M
B

E
R

 O
F

 D
A

Y
S

Figure 7: Feature distribution per day. This his-

togram shows the distribution of the number of features

being worked on per day.

Figure 7 shows the distribution of features being worked

on per day, with an average of 25 features under devel-

opment per day, and the maximum being 86.

Figure 8 shows the distribution of feature development

6



100 200 300 400 500 600 700 800 900 1000 >1000

0
20

40
60

80
10

0
12

0

FEATURE INTERVAL IN DAYS

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

Figure 8: Distribution of feature intervals. This

histogram shows the distribution of feature development

interval in number of days.

intervals. The average is 318 days, with the longest be-

ing more than 3,000 days. Note that this only reects

the feature activity with respect to coding. The actual

feature interval also includes estimation, planning, re-

quirements, design, and feature test.

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

40
60

FILES AFFECTED BY FEATURE

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

Figure 9: Number of �les a�ected by a feature.

This histogram shows the distribution of the number of

�le a�ected per feature.

Figure 9 shows the distribution of feature size, where

size is the number of �les a�ected by MRs belonging to

that feature. On average, a feature a�ects 30 �les with

the maximum a�ecting 900 �les.

Figure 10 shows the number of MRs per feature. On

average, a feature is implemented by 35 MRs with the

biggest features having more than 2,000 MRs. Obvi-

ously, quite a few MRs a�ect the same �les.

Figure 11 shows the number of developers working on

a feature. On average, 4 developers work on a feature

and the biggest one had 98 developers.

4.5 Analysis of Parallel IMRs

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

40
60

80

MRs PER FEATURE

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

Figure 10: Number of MRs implementing a fea-

ture. This histogram shows the distribution of the

number of MRs per feature.

1 2 3 4 5 6 7 8 9 10 >10

0
50

10
0

15
0

DEVELOPERS PER FEATURE

N
U

M
B

E
R

 O
F

 F
E

A
T

U
R

E
S

Figure 11: Number of developers working on a

feature. This histogram shows the distribution of the

number of developers per feature.

Figure 12 shows the distribution of IMRs being worked

on per day, with an average of 22 IMRs per day, and

the maximum being 62.

Figure 13 shows the distribution of IMR development

intervals. The average is 15 days, with the longest being

more than 2,000 days. 46% of the IMRs are solved in one

day. Note that this only reects the IMR activity with

respect to coding. The interval from formal opening to

closing of an IMR may be longer.

Figure 14 shows the distribution of IMR size, where

size is the number of �les modi�ed by MRs belonging

to that IMR. On average, an IMR a�ects 4 �les with

the maximum a�ecting 400 �les. 51% of the IMRs only

modify single �les.

Figure 15 shows the number of MRs per IMR. On aver-

age, an IMR is solved by 2 MRs with the biggest IMRs

having close to 100 MRs.

Figure 16 shows the number of developers working on

7



0 10 20 30 40 50 60 70

0
20

0
40

0
60

0
80

0
10

00

NUMBER OF IMRs PER DAY

N
U

M
B

E
R

 O
F

 D
A

Y
S

Figure 12: IMR distribution per day. This his-

togram shows the distribution of the number of IMRs

being worked on per day.

<1 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
50

0
10

00
15

00
20

00
25

00
30

00

IMR INTERVAL IN DAYS

N
U

M
B

E
R

 O
F

 IM
R

s

Figure 13: Distribution of IMR intervals. This his-

togram shows the distribution of IMR development in-

terval in number of days.

an IMR. On average, 1 developer works on an IMR and

the biggest IMR has 9 developers.

4.6 Analysis of Parallel MRs

Figure 17 shows the distribution of MRs being worked

on per day, with an average of 70 MRs open per day

and a maximum of more than 200.

Figure 18 shows the distribution of MR development

intervals. The average is 10 days, with the longest being

more than 2,000 days. The �gure shows that 50% of the

MRs are opened and solved on the same day.

Figure 19 shows the distribution of MR size, where size

is the number of �les modi�ed by that MR. On average,

an MR modi�es 1 �le with the maximum modifying 15

�les.

4.7 Parallel Versions

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
50

0
10

00
15

00
20

00
25

00
30

00

FILES AFFECTED BY IMR

N
U

M
B

E
R

 O
F

 IM
R

s

Figure 14: Number of �les a�ected by an IMR.

This histogram shows the distribution of the number of

�le modi�cations per IMR.

1 2 >2

0
10

00
20

00
30

00
40

00

MRs PER IMR

N
U

M
B

E
R

 O
F

 IM
R

s

Figure 15: Number of MRs belonging to an IMR.

This histogram shows the distribution of the number of

MRs per IMR.

Figure 20 shows the distribution of the number of MRs

a�ecting each �le over the lifetime of the �le. This is

an unreasonably high upper bound for the number of

versions for a �le. A tighter upper bound would be to

get the maximum of the number of active MRs per �le

(e.g. 8 for the �le in Figure 4). Figure 21 shows the

distribution of this quantity over all �les. It shows that

an average �le may have up to 1.7 MRs per day, which

translates to 1.7 active variants at a given time. It also

shows that 55% the �les never have more than one MR

at a time, although about 25% of the �les can have 2

MRs per day and 20% of the �les can have 3 to 16 MRs

per day.

5 VALIDITY

In any study, there are three aspects of validity that

must be considered in establishing the credibility of that

study: construct validity, internal validity, and external

validity. We consider each of these in turn.

8



1 2 >2

0
10

00
20

00
30

00
40

00
50

00

DEVELOPERS PER IMR

N
U

M
B

E
R

 O
F

 IM
R

s

Figure 16: Number of developers working on an

IMR. This histogram shows the distribution of the

number of developers per IMR.

  20   40   60   80   100    120    140    160    180    200    220    

0
10

0
20

0
30

0
40

0

NUMBER OF MRs PER DAY

N
U

M
B

E
R

 O
F

 D
A

Y
S

Figure 17: MR distribution per day. This histogram

shows the distribution of the number of MRs being

worked on per day.

In trying to understand the phenomena of parallel

changes it has been necessary to understand it at the

various levels at which it occurs: the product level, the

individual release level, the problem (IMR) level and

the solution (MR) level. The measures that we have

taken at these levels are precisely those which provide

us with the critical information about parallelism of de-

velopment. Thus we argue that we have the necessary

construct validity.

As can be seen from the data as we have presented it,

we have done only the minimal amount of data manip-

ulation and that to put it into easily understood forms

of summarization. Thus we argue that we have the nec-

essary internal validity.

It is in the context of external validity that we must

be satis�ed with arguments weaker that we would like.

We argue from extra data (namely, visualizations of the

entire 5ESS system similar to Figure 1) that this sub-

system is su�ciently representative of the other subsys-

<1 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
20

00
40

00
60

00
80

00
10

00
0

12
00

0
14

00
0

MR INTERVAL IN DAYS

N
U

M
B

E
R

 O
F

 M
R

s

Figure 18: Distribution of MR intervals. This his-

togram shows the distribution of MR development in-

terval in number of days.

1 2 >2

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

FILES TOUCHED BY MR

N
U

M
B

E
R

 O
F

 M
R

s

Figure 19: Number of �les a�ected by an MR.

This histogram shows the distribution of the number of

�le modi�cations per MR.

tems to act as their surrogate. The primary problem

then is the representativeness of 5ESS as an embedded

real time and highly reliable system. In its favor are the

facts that it is built using a common language (C) and

development platform (UNIX). Also in its favor are the

facts that it is an extremely large and complicated sys-

tem development and that problems encounter here are

at least as severe as those found in lesser sized and com-

plicated developments. Thus we argue that our data has

a good level of external validity and is generalizable to

other developments of similar domains.

6 SUMMARY AND EVALUATION

6.1 Study Summary

This work represents initial empirical investigations to

understand the nature of large scale parallel develop-

ment. The data showed that in this subsystem:

� There are multiple levels of parallel development.

Each day, there is ongoing work on multiple MRs by

9



Features IMRs MRs

Min Ave Max Min Ave Max Min Ave Max

Being worked on per day 0 25.34 86 0 21.78 62 1 69.31 223

Interval (days) 1 318.50 3344 < 1 14.55 2233 < 1 10.10 2191

Files a�ected 1 31.00 906 1 4.34 388 1 1.10 15

MR count 1 34.56 2188 1 2.56 86 n/a n/a n/a

Developer count 1 3.99 98 1 1.12 9 n/a n/a n/a

Table 1: Data summary. This table summarizes the histogram data. The n/a's are, by de�nition, 1's.

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 100 >100

0
10

0
20

0
30

0
40

0
50

0

MRs PER FILE

N
U

M
B

E
R

 O
F

 F
IL

E
S

Figure 20: Number of MRs per �le. This histogram

shows the distribution of the number of MRs a�ecting

each �le over the lifetime of the �le.

1 2 3 4 5 6 >6

0
50

0
10

00
15

00
20

00

MAXIMUM NUMBER OF MRs PER DAY PER FILE

N
U

M
B

E
R

 O
F

 F
IL

E
S

Figure 21: Maximum number of MRs per �le per

day. This histogram shows the distribution of the max-

imal number of MRs that a�ect each �le in a day.

di�erent developers solving di�erent IMRs belong-

ing to di�erent features within di�erent releases.

Table 1 summarizes the data from subsections 4.4

to 4.6.

� The activities within each of these levels cut across

common �les. 12.5% of all deltas are made by dif-

ferent developers to the same �les within a day of

each other and some of these may interfere with

each other.

� Over the interval of a particular release (I6), the

number of �les changed by multiple developers is

50% which while not concurrent with respect to

the MR level is concurrent with respect to the re-

lease. These may also have interfering changes |

though we would expect the degree of awareness of

the implications of these changes to be higher than

those made within one day of each other.

6.2 Evaluation of Current Support

As we mentioned in the introduction to the data and

analyses section, the histograms provide a critical pic-

ture of the problems that need to be solved. In par-

ticular, the tails of the distributions are the signi�cant

factors to consider in technical support, not the mean

values. In both the cases of workspaces and merging,

we claim that those critical factors have not been un-

derstood or appreciated.

The data in subsection 4.6 suggests that, if each MR had

its own workspace, we would need on the order of 70 to

200 workspaces per day for this particular subsystem.

(And this is just one of 50 5ESS subsystems!) More-

over, since 50% of MRs are solved in less than a day,

the cost and complexity of constructing and destroy-

ing workspaces becomes very important. One might re-

duce the number of workspace per day by assuming one

workspace per IMR or per feature. Doing so introduces

further coordination problems since there may be more

than one developer working on the IMR or feature.

Given the multi-level nature of feature development,

one might imagine the need for a hierarchical set of

workspaces[8] such that there is a workspace for each

feature, a subset of workspaces for each IMR for that

feature and then individual workspaces for each MR.

In either case, further studies are needed to determine

the costs and utility of workspaces in supporting the

phenomena we have found in this study.

The utility of the current state of merge support

depends on the level of interference versus non-

interference. The data in subsection 4.7 indicates that

about 45% of the �les can have 2 to 16 parallel versions

10



with potentially interfering changes. It is not clear how

well current merge technologies will be able to support

this degree of parallel versions | how do you merge 16

parallel versions? The data we have uncovered certainly

leads us to be sympathetic with Adele's claim that fre-

quent updates are necessary for coordinated changes

and that waiting until commit time will lead to par-

allel versions that cannot be merged without some very

costly overhead and coordinated e�ort. In fact, the sup-

ported strategy is what is left unsupported in these de-

velopments.

Further studies are needed to assess the validity and

utility of merge technologies. We note in the next sec-

tion one such study that will help to assess this area.

6.3 Future Directions

We have looked at only the prima facie conicts, namely,

those where there are changes on changes or changes

within a day of each other. A more interesting class

of conicts are those which we might term semantic

conicts. These cases arise where changes are made to

the same slices of the program and hence may interfere

with each other semantically. This phenomena requires

us to look very closely at the �les themselves via some

program analysis tools.

Once we have this level of understanding and knowl-

edge of interference, it will be interesting to see if there

are any correlations between the associated quality data

and programs where there are high degrees of parallel

changes and/or interference.

ACKNOWLEDGEMENTS

The Code Decay Project [2] is a multi-disciplinary and

multi-institution project for which a common infrastruc-

ture has been created in support of multiple strands

of software engineering research. We wish to thank

members of the project who have provided us with

background information, insightful discussions, techni-

cal suggestions, and general support which led to this

work.

REFERENCES

[1] Frederick P. Brooks, Jr. No silver bullet: Essence

and accidents of software engineering. IEEE Com-

puter, pages 10{19, April 1987.

[2] Code decay home page. http://www.bell-labs.com/

org/11259/projects/decay.

[3] Jacky Estublier and Rubby Casallas. The Adele

con�guration manager. In Walter F. Tichy, ed-

itor, Con�guration Management. Trends in Soft-

ware. John Wiley & Sons, 1994.

[4] Barney G. Glaser and Anselm L. Strauss. The Dis-

covery of Grounded Theory: Strategies for Qualita-

tive Research. Aldine Publishing Company, 1967.

[5] Rebecca E. Grinter. Doing software develop-

ment: Occasions for automation and formalisa-

tion. In Proceedings of the European Conference on

Computer Supported Cooperative Work, Lancaster,

U.K., Sept. 1997.

[6] Susan Horwitz, Jan Prins, and Thomas Reps. Inte-

grating noninterfering versions of programs. ACM

Trans. on Software Engineering and Methodology,

11(3):345{387, July 1989.

[7] Charles M. Judd, Eliot R. Smith, and Louise H.

Kidder. Research Methods in Social Relations. Har-

court Brace Jovanovich College Publishers, 1991.

[8] Gail E. Kaiser and Dewayne E. Perry. Workspaces

and experimental databases: Automated support

for softwaremaintenance and evolution. In Proceed-

ings of the 1987 International Conference on Soft-

ware Maintenance, pages 108{114, Austin, Texas,

Sept. 1987.

[9] David B. Leblang. Personal communication.

[10] David B. Leblang. The CM challenge: Con�gura-

tion management that works. In Walter F. Tichy,

editor, Con�guration Management. Trends in Soft-

ware. John Wiley & Sons, 1994.

[11] Alex Mahler. Variants: Keeping things together

and telling them apart. In Walter F. Tichy, ed-

itor, Con�guration Management. Trends in Soft-

ware. John Wiley & Sons, 1994.

[12] K.E. Martersteck and A.E. Spencer. Introduction

to the 5ESS(TM) Switching System. AT&T Tech-

nical Journal, 64(6 part 2):1305{1314, July{August

1985.

[13] Marc J. Rochkind. The Source Code Control Sys-

tem. IEEE Trans. on Software Engineering, SE-

1(4):364{370, December 1975.

[14] Walter Tichy. Design, implementation and evalua-

tion of a revision control system. In Proceedings of

the 6th International Conference on Software En-

gineering, pages 58{67, Tokyo, Japan, Sept. 1982.

[15] P. A. Tuscany. Software development environment

for large switching projects. In Proceedings of Soft-

ware Engineering for Telecommunications Switch-

ing Systems Conference, 1987.

11


