
Dimensions of Consistency in Source Versions and System Compositions
— An Extended Abstract

Dewayne E. Perry
Software and Systems Research Center

AT&T Bell Laboratories
Murray Hill, NJ 07974

1. Introduction

Among the various issues that must be addressed in the

building of software systems, there are two issues that

fall within the province of version and configuration

management: component derivation and component

consistency — that is, recording or determining the

derivation of one component from another, and

determining whether the components within a particular

configuration are consistent with each other.

Much of the past and current work in version and

configuration management has addressed the problem of

keeping track of how components are derived. We have

systems that manage version and configuration histories

— for example SCCS [8], RCS [10], NSE [1], etc — by

effectively keeping either a tree or a graph representing

the derivation history of source versions. We have

various tools that provide automated derivation of

secondary objects1 — for example, various forms of

Make [3], etc, or such opportunistic processors as Marvel

[5] — to help us build executable versions of our

systems. In general, we have a fairly deep understanding

of the issues in managing the derivation relationship both

for manually derived components as well as

automatically derived components. For example, see

Borrison [2] for a discussion of these latter issues.

__________________

1. Secondary only in the sense that we have automated means of
deriving them from objects that require manual construction.

The second concern has received much less attention. In

general, we use basic system development tools rather

than version and configuration-specific tools for purposes

of determining consistency and other relationships

between components. For example, we use compilers to

determine general syntactic consistency, linking loaders

to determine the general completeness of a system

composition, and testing to determine the fine and large-

grained semantic consistency of that composition.

The primary drawback of using these general

development tools is that they do not provide a sharp

focus on those problems of consistency that are endemic

to version and configuration management. Moreover,

they do not exploit any of the existing relationships that

could be used by domain-specific tools.

It is the purpose of this paper to present what we

consider to be the dimensions of consistency for both

source and composed versions of components in building

software systems.

2. The Dimensions

There are two basic problems that motivate our interest

in the consistency of atomic (that is, source modules) and

composed components: that of putting them together so

that the resulting system is consistent, and that of

substituting one component for another in an existing

composition in such a way that consistency is preserved.

To accomplish the initial composition and the subsequent

substitution, we need to be able to reason about the

various aspects of components and compositions. For



this reasoning process, we need to consider relationships

that are richer than those we currently use in keeping

track of historical derivation or for automatic derivation

of secondary objects. The need for these richer

relationships has been realized in a rather primitive

fashion in that we have overloaded our historical

derivation relationships with connotations beyond what

the concepts can sustain: we tend to think of successive

versions as refinements (more specifically,

improvements) of basically equivalent versions and

parallel versions as alternative, but equivalent, variants.

Neither of these interpretations represents what really

happens in a typical derivation history. Some successive

versions are not even compatible much less equivalent to

the preceding version. Inferences about parallel versions

are equally suspect.

We propose three interdependent dimensions to be

considered as basic to reasoning about components and

compositions:

• well-formedness of compositions — that is, that the

provided and required facilities of components and

compositions are syntacticly consistent and that

compositions are constructed properly;

• small-grained semantic consistency — that is, that

interfaces of components and compositions are used

in a consistent manner; and

• large-grained semantic consistency — that is, that

shared dependencies in various forms are resolved in

a consistent manner.

2.1 Well-Formed Compositions

The well-formedness of system compositions from

components that meet basic constraints (about the

provided and required facilities in the syntactic interface

of the component) is the foundation for building

syntactically and semantically consistent systems (see

Habermann and Perry [4] for a complete discussion of

the various aspects of well-formed systems). Within this

context, there are syntactic relationships that are

important for successful substitution of one component

for another:

• At the facilities level (that is, the syntactic objects in

a module) extensions can be made to the declarations

of facilities that preserve syntactic compatibility of

the new module with the old. These may be either

strict or permuted extensions: strict extensions add

new fields or new parameters to structures and

operations without altering the order of the existing

fields or parameters; permuted extensions add new

fields or parameters and do alter the the order of

those fields or parameters. Within certain

constraints, strict extensions are substitutable without

affecting the consistency of the composition or

causing recompilation. Permuted extensions to

structures are permissible but require recompilation.

Permuted extensions to parameter lists require both

named parameter support in the language (for

example, as in Ada) and recompilation in order to be

safely substitutable within the system. Note,

however, that in this latter case, existing data may

need to be transformed to remain consistent with the

permuted extensions.

• At the module level, extensions by means of

additional facilities are always substitutable as long

as these extensions do not require additional facilities

(see Tichy’s definition of upward compatibility [9]).

• At the system level, we can relax the rule about no

new required facilities for module extensions and

define a notion of system compatibility in which a

module is allowed additional required facilities as

long as they are already required by the system or are

provided internally by the system.

2.2 Semantics of Interfaces

The syntactic level of reasoning does not account for

objects (or versions of objects) that may have identical

syntactic interfaces but entirely different semantics. It is

for this reason that we must also consider fine-grained

semantic consistency issues. One example of this type of

approach is found in the interface specifications and

static analysis supported by the Inscape Environment [7].

Formally defined predicates provide the fine-grained

semantic dependencies and interconnections with which

we can formally define semantic relationships and reason



about them in both constructing compositions and in

substituting one component for another in a composition.

Perry’s ‘‘Version Control in the Inscape Environment’’

[6] provides an example of this approach.

On the basis of the formal interface specifications, we

can formally define the context-independent notions of

semantic equivalence, semantic compatibility and

semantic incompatibility for the various facilities in a

module interface. We then extend these notions to

module equivalence, compatibility and incompatibility.

Analogous to syntactic extensions to facilities, we define

the notion of semantic extensions and several flavors of

compatibility. One aspect that is important with respect

to substitution is the semantic independence of the

extensions.

On the basis of semantic equivalence, compatibility, and

independence, we then define various flavors of context-

dependent implementation compatibility that capture

various kinds of side-effects that result when one

component is substituted for another.

2.3 Semantics of Shared Dependencies

The semantics of interfaces considers only aspects of

semantic relationships of two modules in relation to each

other or of a single module in the context of a

composition. It is increasingly common that our

software systems have multiple dimensions of

organization, particularly when considered from the

standpoint of version management. For example, we

have the notion of features in telephone switching

systems that often are orthogonal to the decomposition or

design structure [11] — that is, multiple components

cooperate in implementing some particular behavior; this

kind organizational complexity is further compounded by

such things optioning and portability.

The simplest manifestation of these large-grained

semantic dependencies is the sharing of a particular

structure between several components. As the structure

evolves in arbitrary ways, the sharing components may

have to evolve as well. Mixing versions of these

components that have this form of shared dependency

often results in a composition that is syntactically

consistent but semantically inconsistent.

A more complicated form of shared dependency is that of

several components sharing in a cooperative

implementation (of, say, an algorithm, procedure, or

feature). Here the details of the implementation and how

they are apportioned among the components are not at all

obvious from even the semantics of the interfaces.

In either case, it is exceedingly important that these

shared dependencies be made explicit and considered in

building consistent compositions and in substituting

components within those compositions.

3. Summary

Building large, complex systems from components is a

task that requires the consideration of a large number of

factors. We need a rich variety of relationships between

components in order to reason about various aspects of

composition and substitution. All three dimensions

presented above must be considered to successfully

compose a system from components and to successfully

substitute one component for another.

References

[1] Evan W. Adams, Masahiro Honda and Terrance

C. Miller. ‘‘Object Management in a CASE

Environment’’, The Proceedings of the Eleventh

International Conference on Software

Engineering, May 1989, Pittsburgh, PA. pp 154-

163.

[2] Ellen Borrison. ‘‘A Model of Software

Manufacture’’ Advanced programming

Environments, Trondheim, Norway, June 1986.

pp 197-220. Lecture Notes in Computer Science

244, Springer-Verlag, 1986.

[3] Stuart I. Feldman. ‘‘Make — a Program for

Maintaining Computer Programs’’, Software —

Practice & Experience 9:4 (April 1979). pp

255-265.

[4] A. Nico Habermann and Dewayne E. Perry. Well

Formed System Composition. Carnegie-Mellon



University, Technical Report CMU-CS-80-117.

March 1980.

[5] Gail E. Kaiser. ‘‘Intelligent Assistance for

Software Development and Maintenance’’, IEEE

Software 5:3 (May 1988). pp 40-49.

[6] Dewayne E. Perry. ‘‘Version Control in the

Inscape Environment’’, Proceedings of the 9th

International Conference on Software

Engineering, March 30 - April 2, 1987, Monterey

CA.

[7] Dewayne E. Perry. ‘‘The Inscape Environment’’.

The Proceedings of the Eleventh International

Conference on Software Engineering, May 1989,

Pittsburgh, PA.

[8] M. J. Rochkind. ‘‘The Source Code Control

System’’, IEEE Transactions on Software

Engineering, SE-1:4 (December 1975). pp 364-

370.

[9] Walter F. Tichy. Software Development Control

Based on System Structure Descriptions. Ph.D.

Thesis, Computer Science Department,

Carnegie-Mellon University, January 1980.

[10] Walter F. Tichy. ‘‘RCS — A System for Version

Control’’, Software — Practice & Experience,

15:7 (July 1985). pp 637-654.

[11] P. A. Tuscany. ‘‘Software Development

Environment for Large Switching Projects’’,

Proceedings of Software Engineering for

Telecommunications Switching Systems

Conference, 1987


