
System Compositions and Shared Dependencies

Dewayne E. Perry

Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 USA

Abstract. Much of the work in con�guration management has addressed
the problems of version history and derivation. Little has been done to

address the problems of reasoning about the consistency of composed

components or the e�ects of substituting one version for another. In my
paper, \Version Control in the Inscape Environment" [13], I de�ned a

number of concepts to be used in reasoning about substituting one com-

ponent for another. In this paper, I discuss the problem of shared depen-
dencies (that is, substituting one of more interdependent components in

a context), propose an approach for specifying such dependencies, and

show how this approach can be used to reason about the substitution in
the context of interdependent components in a con�guration.

1 Introduction

In building software systems from components, there are two important concerns
that we must address: keeping track of how components in a system are derived,
and determining that the components comprising a system are consistent with
each other.

Much of the past and current work in version and con�guration management
has been focused on determining and keeping track of how components are de-
rived. We have systems, such as SCCS [16], RCS [18], and NSE [1], to help us
manage version and con�guration histories. Typically, these tools use trees or
graphs to represent the derivation of source versions. We have tools, such as
various forms of Make [6] and such opportunistic processors as Marvel [9], to au-
tomatically derive objects we need to build executable versions of our systems.
Typically, these tools use (unit or syntactic) dependency [12] descriptions as the
basis for their automation. In general, we have a fairly deep understanding of
how to manage the derivation relationships both for manually derived and for
automatically derived components [3].

The problem of component consistency, however, has received much less
attention by researchers in con�guration management. Instead of using tools
speci�c to programming-in-the-large, we manage consistency checking with ba-
sic component-building and systems-building tools, such as compilers and link-
loaders, and with laborious and (necessarily) incomplete testing.

There are two basic problems that motivate our interest in the consistency
of atomic and composed components: that of putting them together so that
the resulting system is consistent, and that of substituting one component for
another in an existing composition in such a way that consistency is preserved.

The well-formedness of system compositions from components that meet ba-
sic constraints (about the provided and required facilities in the syntactic inter-
face of the component) is the foundation for building syntactically and semanti-
cally consistent systems. See Habermann and Perry [7] for a complete discussion
of the various aspects of syntactically well-formed systems.

Once we have basic syntactic consistency, we must then worry about seman-
tic consistency. It is for this reason that such approaches as found in the Inscape
Environment [14] and Narayanaswamy and Scacchi [11] are important. The pri-
mary concern of Inscape has been exploring the constructive use of interface
speci�cations in sequential programs. Thus, Inscape provides us a way of con-
structing the semantic interconnections [12] among components that provides
the basis for reasoning about the initial consistency of system compositions and
the preservation of consistency when substituting one component for another.

In my paper on version control in Inscape [13], I addressed the problem of
reasoning about independent substitutions in system composition.s In this paper,
I address the problem of interdependent substitutions | that is, the substitution
of components that participate in shared dependencies. I �rst explain shared
dependencies in section 2, the current state of the art in section 3, and then
discuss the necessary groundwork in section 4. I discuss my approach to reasoning
about shared dependencies in section 5. I �rst introduce the form of shared-
dependency speci�cations and the method for constructing them in section 5.1. I
next present the rules for determining the well-formedness of those speci�cations
in section 5.2, and the rules for determining their satisfaction by compositions
in section 5.3. I summarize the results of the paper in section 6.

2 Shared Dependencies

Shared dependencies among components arise naturally in the way we build sys-
tems and are not necessarily the result of having built them badly. Because of
our desire to separate concerns, encapsulate and abstract, we break up our com-
plex systems into distinct components that cannot, of necessity, be completely
independent.

It is also increasingly common that our software systems have multiple di-
mensions of organizations, particularly large and complex systems. For example,
we have the notion of features in telephone switching systems that are often or-
thogonal to the design structure [20] | that is, the implementation of a feature
is to be found distributed among design components that also share in the im-
plementation of other features. This kind of organizational complexity is further
compounded by such considerations as specialization, optioning and portability.
We note in passing that the occurrence of multiple dimensions of organization
is a general problem, not one endemic to switching systems.

A common form of shared dependency occurs where several components share
data structures. These dependencies are implicit in the assumptions about the
state of the shared structures that each component makes when using those

shared structures. The shared use of devices is another example of this form of
shared dependency.

We �nd that a similar but more complicated form of sharing occurs when
several components share in the implementation of a complex algorithm. This
form is similar to the previous one because the distributed processing is usually
glued together by means of a shared data structure, or set of data structures.
Not only is the assumed state important to the processing by each component,
but there is an invariant, or set of invariants, that must be maintained for the
shared structure or structures.

Producers and consumers interacting and communicating by sharing a queue
is a simple example of the �rst form of shared dependencies. A slightly more com-
plicated example is that where one component opens a �le, another components
reads and processes some of the contents, another makes use of that information,
and yet another closes the �le. In each case, the components have assumptions
about the state of the shared structures.

Two problems arise from these shared dependencies. First, one must treat
the components together in context and not in isolation. In evolving any one of
these components, one must often change other components participating in the
shared dependency as well. Second, this problem of context is compounded by
the fact that it is not unusual for a component to participate in several shared
dependencies. This is particularly true in large complex systems where there
are multiple dimensions of organization. In both cases, substitution in a system
composition is not a simple consideration. Because shared dependencies involving
a single component often extend in several di�erent directions simultaneously,
integration of individual component changes is complex and error prone.

3 Current State of the Art and Research

The current state of the art in handling shared dependencies is represented by
two di�erent kinds of approaches: attribute-based con�guration management
systems and language-based programming-in-the-large facilities.

Two such CM systems are Adelle [5] and Workshop [4]. Both provide facil-
ities at what I call the unit interconnection level | that is, dependencies are
expressed between rather large-grained units (�les, procedures, etc.). In Adelle,
objects have attributes that may be used to indicate shared traits. For exam-
ple, attributes may be used to indicate that certain versions are for a particular
machine or for particular options. In Workshop, attributes are attached by the
system to all objects edited in a particular workshop session. These attributes
then indicate related sets of changes and can be used in a relatively coarse-
grained way to indicate shared dependencies.

Two programming languages that o�er some help with shared dependencies
are ML and Ada. Both enable one to pass objects to modules and thus explicitly
specify when objects are being shared between several modules. They provide
what I call syntactic interconnections | that is, dependencies between syntactic
entities in the languages. In ML, one can specify the sharing of data structures

by means of functors. In Ada, one can specify the sharing of data structures as
parameters to generic instantiations of modules.

The attribute-based approach has the advantage of indicating which com-
ponents share a particular dependency. It does not however indicate what the
dependent data structures are nor what the actual semantic dependencies are
between those components. The language-based approach has the advantage of
making explicit what the dependent data structures are. Unfortunately, that is
all that it does indicate. It only indirectly indicates what components are in-
volved, but does not o�er much assistance when multiple data structures are
involved. Neither does it provide any information about the actual semantic
dependencies among the components.

SVCE [8] provides programming-in-the-large (again, syntactic interconnec-

tions facilities for both encapsulation and system composition. Both the en-
capsulation facilities and the system composition facilities enable one to group
collections of related components together. Thus, one can indicate what is being
shared and bound the scope of that sharing by either of these means. However,
these facilities only work where any of the components only participate in a single
shared dependency. SVCE also su�ers from the disadvantage of not expressing
the semantic dependencies between components.

To our knowledge, these approaches represent not only the current state of
the art, but the current state of research as well. Mahler in his article about Shape
[10] mentions the problems of multiple variances and the problems of semantic
consistency in the presence of building compositions where components share in
such multiple variances, but does not address them in that paper.

Batory and Geraci [2] come to grips with some of these problems in the con-
text of their domain-speci�c system generators, adjusting the choice of some of
the components dependent on other component choices to generate a consistent
domain-speci�c system. Their mechanisms for doing this consistent generation
are analogous to my approach in Inscape, but using only primitive predicates.
Their rules of composition are similar to those of Inscape [15].

4 Preliminary Groundwork

The approach I present in the next section is based on the approach that I have
previously taken in the Inscape Environment: specifying module interfaces in
Instress [14], reasoning about the composition of components in the construc-
tion and evolution of systems [17], and reasoning about the relationships among
component interfaces [13].

4.1 Interface Speci�cations

Instress module speci�cations contain three components: predicate de�nitions,
data speci�cations, and operation speci�cations. Predicates may be de�ned as
primitive (that is, uninterpreted), or in terms of other de�ned predicates and/or
boolean predicates. Data speci�cations consist of a declaration with additional

properties to further constrain the values of the type or object. Operation spec-
i�cations consists of a function or procedure declaration, a set of preconditions
(a conjunct of predicates), and a set of results. Each result consist of a set of
postconditions and a set of obligations (both are conjuncts of predicates) | see
the example of an operation speci�cation in Instress.

Postconditions de�ne what is known to be true as a result of the operation's
execution. Obligations de�ne what must become true at some time in the future
of the computation | that is, the computation is obliged to ful�ll the obligation
or it is a semantically incorrect computation. Obligations are generally used to
indicate either the relationship of bracketing operations (such as open and close,
allocate and deallocate) or the expression of an invariant among components. It
is this last purpose that is of particular importance in the sequel.

The de�nition of consistency is straightforward:

A predicate or set of predicates P is consistent if and only if it is not the
case that P ` false 1.

The consistency of a speci�cation as a whole, then depends on the consistency
of the various parts.

An Interface Speci�cation S = (P, D, O) is consistent if and only if

{ the de�nition of each predicate Pi in P is consistent,

{ the set of properties de�ned for each data object Di in D is consistent,
and

{ each set of preconditions, postconditions and obligations for each
operation Oi in O is consistent.

4.2 Interface Relationships

These formal descriptions of interfaces are the basis for reasoning about the
relationships among various components and versions of components. Because
of the semantic interconnections established during construction of the software,
we can reason about the substitution of one version for another both dependent
on the context of that construction and independent of it.

On the basis of Inscape's interface formalism, I de�ned the concepts of iden-
tity, equivalence, strict compatibility, upward compatibility, and various forms of
implementation-dependent compatibility [13]. I separated the notion of compat-
ibility into two distinct concepts: dependency preserving compatibility (strict)
and functionality preserving compatibility (upward).

Of the two forms of context-independent upward compatibility, the more
useful in reasoning about single substitution was strict compatibility.That utility
is due precisely to its focus on dependency preservation.

Operation O2 is a strictly compatible version of O1 if and only if

1 In the reamining discussion, the logical notions are those of a standard �rst order

predicate logic.

OpenFile(<in> �lename fn, <out> �leptr fp)

returns unsigned int status

Synopsis:

If a �le exists with the �le name in fn, then the �le is opened for I/O and a

pointer to the �le is returned for all further I/O operations.

Preconditions:

[V] LegalFileName(fn)

[V] FileExists(FileNamedBy(fn))

fSuccessful resultg
Determined by:

status' == 0

Synopsis:

The �le named in fn is open for i/o and fp references that �le.

Postconditions:

LegalFileName(fn)
FileExists(FileNamedBy(fn))

FileOpen(*fp')

ValidFilePtr(fp')
FileNamedBy(fn) == *fp'

Obligations:

FileClosed(*fp')
fException Result: IllegalFileNameg
Determined By:

status' == 1
Synopsis:

The �le name is not a legal one.

Precondition failure:

LegalFileName(fn)

Postconditions:

not: LegalFileName(fn)
Obligations:

<none>

Recovery Method:
Correct the �le name.

fException Result: NonExistantFileg
Determined By:
status' == 3

Synopsis:

The �le named by fn does not exists.
Precondition failure:

FileExists(FileNamedBy(fn))

Postconditions:

LegalFileName(fn)

not: FileExists(FileNamedBy(fn))

Obligations:

<none>

Recovery Method:

Choose a name for a �le that exists.

{ PRE(O1) ` PRE(O2) and
{ POST(O2) ` POST(O1) and
{ OBL(O2) ` OBL(O1) and OBL(O1) ` OBL(O2).

That is, O2 requires no more than O1, produces no less and obligates equally.
We shall see below that the more useful concept in reasoning about shared
dependencies is upward compatibility, precisely for its emphasis on functionality
(or if you will, behavioral) preservation.

The de�nition used in the rest of the paper for upward compatibility is that
an upwardly compatible version preserves the original functionality or behavior
while extending it.

Operation O2 is an upwardly compatible version of O1 if and only if
{ PRE(O2) ` PRE(O1) and
{ POST(O2) ` POST(O1) and
{ OBL(O2) ` OBL(O1).

Formally, the base component interface is derivable from the upwardly com-
patible component interface | that is, the preconditions, postconditions and
obligations of the base component are derivable from the preconditions, post-
conditions and obligations of the upwardly compatible component.

4.3 Composition

Instress's formal interface speci�cations are also the basis for reasoning about
the constructive composition of these components into implementations. In my
paper \The Logic of Propagation in the Inscape Environment" [15], I de�ned the
rules of composition for sequence, selection and iteration. On the basis of rules
about function invocation and assignment, the rules for sequence, selection and
iteration enable one to compose program fragments (and derive their interfaces
by the rules of the propagation logic) which can be further composed with other
fragments until an implementation sequence has been composed for the desired
operation.

It is this notion of a composed sequence that will be of importance in the
discussion of reasoning about shared dependencies. An important aspect of a
composed sequence is whether it is complete or not | that is, whether all the
preconditions and obligations have been handled properly according to the basic
rule in Inscape: all preconditions and obligations in a composed fragment must
be either satis�ed within that fragment or propagated to the interface of that
fragment.

Germane to the de�nition of the completeness of a program fragment are
the notions of precondition ceilings and obligation
oors [15]. In the propagation
of preconditions and obligations when constructing program fragments, the pre-
conditions percolate \upwards" and the obligations percolate \downwards" in
search of either satisfying postconditions or the \edge" of the implementation
(that is, the interface). Preconditions ceilings are logical barriers to that move-
ment of the precondition \up through" the implementation to the interface. For

example, a postcondition of not P forms a ceiling for an unsatis�ed precondition
P in its movement up to the interface. The obligation
oor functions similarly
for obligation as they move \down through" the implementation fragment to the
interface, though there is not quite the logical necessity that occurs in the case
of preconditions.

An implementation I = sequence S = S1 : : : SN for a program fragment
F is complete if and only if
{ Every precondition in S has either been satis�ed or is in the interface
of F | that is, all precondition ceilings in S (recursively) are empty

{ Every obligation in S has either been satis�ed or is in the interface
of F | that is, all obligation
oors in S (recursively) are empty.

{ There are no iteration errors | that is, the preconditions of each iter-
ation are consistent with postconditions of their respective iteration
bodies.

One further de�nition is needed to complete the preliminary groundwork:
that for a self-contained composition.

An implementation I for a program fragment F is self-contained if and
only if
{ PRE(I) = ; , and
{ OBL(I) = ;

An operation (that is, a function or procedure) is the basic usable syntactic
fragment in most programming languages.

5 Shared Dependency Speci�cations

We now have the basis for reasoning about shared dependencies: the de�nition
of what it means to be a consistent interface speci�cation, the de�nition of what
it means for a component to be an upwardly compatible version of another,
and the de�nitions of what it means for an implementation to be complete and
self-contained.

In the next subsection, I introduce the structure of a shared dependency
speci�cation and propose the method for describing these dependencies. I then
de�ne what it means for a shared dependency to be well-formed. Finally, I discuss
various ways of satisfying these shared dependencies.

5.1 Form and Method

A shared dependency is a set of partial predicate, data and operation speci�ca-
tions together with a set of partially instantiated interface speci�cations.

A Shared Dependency Speci�cation SDS =
(f Partial Speci�cations g, f Partial Instantiations g)

The speci�cations and instantiations are partial because they may not contain
all the type, parameter, or behavioral information that would be found in a full
speci�cation and its use.

The method for de�ning such shared dependencies is as follows:

{ De�ne the predicates needed for the partial object and operation
speci�cations.

{ Declare only those types and objects necessary for de�ning the con-
straints on sharing.

{ Specify only that part of the semantics (the preconditions, postcondi-
tions and obligations) of the operations needed to de�ne the sharing
of dependencies.

{ Instantiate only the arguments needed to de�ne the relationships
between the objects and the operations (use \ " for those arguments
that do not participate in the dependency).

A simple example should su�ce to illustrate both the method and the spec-
i�cation form. The example shared dependency speci�cation illustrates two op-
erations sharing the use of a particular data structure Q of type Queue, such
that operation O1 depends on the state of the shared object Q to be P(Q) and
operation O2 provides this state. Only the predicate P, the type Queue, the ob-
ject Q, and the operations O1 and O2 need to be declared. The operations O1
and O2 are then partially instantiated with the shared object Q.

shareddependency Eg1 = (

declarations f
P (queue q) :: : : : ;
type : : :queue ;

var queue Q ;

O1 (queue x, : : :)

pre: P (x)

O2 (: : : , Queue y)

post: P (y)

g
instantiations f
O1 (Q, , : : :)
pre: P (Q)

O2 (, : : : , Q)

post: P (Q)
g

)

5.2 Well-formedness of Dependency Speci�cations

There are two important questions to ask of any speci�cation: whether it is
well-formed and whether it accurately represents the intent of the designer. The
second question is one that all speci�ers must wrestle with in the same way that
implementorswrestle with the question of whether the code accurately represents
the intent of the design. The �rst question, however, is one that we can address.

The basic intuition, given that we want to concentrate only on those aspects
germane to the speci�c dependency, is that all of the speci�cations are consistent
and that semantic interconnections ought to be \matched up" with just the
information available in the shared dependency speci�cation.

Basic consistency is the �rst consideration for the partial speci�cations in
just the same way that it is the �rst concern in full speci�cations. Moreover, the
de�nition remains the same for partial speci�cations as for full speci�cations.
We note, that for the sake of simplifying the presentation, we consider only the
semantics of operations in the discussion below.

There are two ways by which one might \match up" the semantic dependen-
cies. The �rst way, I call weak composability and the second way I call strong
composability. The di�erence is in the way that the semantic interconnections
are established | that is, in the way in which the semantic dependencies are
satis�ed.

In weak composability, it is su�cient for each precondition and obligation to
be satis�ed in some way by the postconditions found in the partial instantiations.
That is,

A Shared Dependency Speci�cation SD is weakly composable if and only
if

{ For each Precondition Pi of each Instantiated Interface Ij ,

� there is a set �k such that �k is included in the set POST of all
postconditions of all the Instantiated Interfaces except Ij , and

� �k ` Pi
{ For each Obligation Oi of each instantiated interface Ij

� there is a set �k such that �k is included in the set POST of all

postconditions of all the Instantiated Interfaces except Ij , and

� �k ` Oi

The disadvantage of this form of composability is that it only guarantees
that it is possible to satisfy the preconditions and obligations. It does not guar-
antee that there is any composable sequence that satis�es all of the speci�ed
constraints.

The intent of strong composability, however, is precisely to provide that guar-
antee: there is a self-su�cient sequence in which all the preconditions and obli-
gations are satis�ed.

A Shared Dependency Speci�cation SD is strongly composable if and only
if

{ there exists a sequential composition C including all of the Instanti-
ated Interfaces I1 : : : IN such that

� C is complete, and

� C is self-contained.

The de�nition of a well-formed shared dependency speci�cation then matches
our basic intuition, using strong composability as the means of \matching up"
the semantic dependencies.

A Shared Dependency Speci�cation SD is well-formed if and only if

{ SD is consistent, and

{ SD is strongly composable.

5.3 Sets of Shared Dependency Speci�cations

We mentioned in the discussion on shared dependencies that components often
share in multiple dependencies. One has the choice of specifying these inter-
related dependencies as either independent or as integrated speci�cations. Given
that these interdependencies represent system design aspects, perhaps even ar-
chitectural aspects of the system, the preferred method of speci�cation is to
specify them independently and then to combine them.

A combined shared dependency speci�cation is a set of equations and a set
of shared dependencies and has the following form.

A Combined Shared Dependency Speci�cation CSDS =
(f Equations g, f SD Speci�cations g)

The set of component equations specify which components in the di�erent
shared dependency speci�cations are to be considered the same components.
Applying the set of equations to the set of shared dependencies results in a shared
dependency speci�cation in which each set of equated components is merged into
a single component. Names are kept distinct in all cases by using the standard
dot quali�ed names in which the name of the speci�cation is prepended to each
component name. Merged components are renamed by arbitrarily using one of
the equated names. For example,

Eg3 = f Eg1.O1 == Eg2.O3 g applied to f Eg1, Eg2 g

results in Eg3 containing the components of Eg1 and Eg2 that were independent
of the equation, and the merged version of Eg1.O1 and Eg2.O3 called (arbitrar-
ily) Eg3.O1.

Having a well-formed shared dependency speci�cation as a result of combin-
ing well-formed shared dependency speci�cations would be a very nice resulting
property. However, in merging two separate partial speci�cations it is all too
possible to inadvertently create an inconsistent set of predicates. Moreover, it is
very easy to create a non-composable set of operations as a result of the merging.

The best that we can guarantee is that the results of combining shared de-
pendencies will be weakly composable if the original shared dependencies were
at least weakly composable.

There is a second reason for combining shared dependencies: creating higher
level dependency relationships by aggregating existing shared dependency rela-
tionships. Typically, this approach combines independent relationships together.
So, for example

Eg3 = f g applied to f Eg1, Eg2 g

yields a shared dependency that has two independent components as parts of
the shared dependency Eg3. In this case, we do have a well-formed result re-
turned from applying the empty set of equations to the well-formed two shared
dependencies. Both speci�cations remain consistent, and both remain strongly
composed.

5.4 Satisfying Shared Dependency Speci�cations

We �rst consider the problem of a component satisfying a shared dependency
speci�cation, �rst for simple satisfaction and then for aggregate satisfaction.
We then consider the problem of a composition satisfying a shared dependency
speci�cation. Finally, we note that the problems of a composition satisfying a
set of shared dependency speci�cations reduces to the single speci�cation cases.

How a component satis�es a shared dependency speci�cation depends on
what the component is. For types we here choose a simple solution: type equiv-
alence (leaving the question of whether it is name or structural equivalence to
be answered by the implementation language). Alternatively, one might want
to explore the possibility of using type compatibility instead. For predicates, we
again choose a simple solution: equivalence of the de�nitions. For operations, the
component must be an upwardly compatible version of the shared dependency
component that it is satisfying.

A component C satis�es a Shared Dependency Speci�cation component
SC if and only if
{ C and SC are both predicates, C ` SC and SC ` C, or
{ C and SC are both type de�nitions (or they are both object decla-
rations) and their types are equivalent, or

{ C and SC are both operation speci�cations and C is an upwardly
compatible version of SC.

This de�nition enables us to satisfy components in a speci�cation in a simple,
one-to-one fashion. We may have an operation that combines several of the
speci�cation operations into a single component. For this case, we need a slightly
richer de�nition of operation satisfaction.

A operation O satis�es2 an aggregate of Shared Dependency Compo-
nents A = (SC1; : : : , SCn) if and only if

{ PI is the propagated interface of a complete sequential composition
of the components of A, and

{ O is an upwardly compatible version of PI.

Just as in the combining of shared dependency speci�cations, we required
extra information to determine how various parts were related to each other, so
we need an equivalent structure here to relate components in the composition to
those in the speci�cations. This required structure is a map from composition
components to speci�cation components.

A Map M from Composition Components C1 : : : CN to Shared Depen-
dency Components SC1 : : : SCM is well-formed if and only if

{ For all Ci, M(Ci) are distinct (that is, no two composition compo-
nents are mapped to the same shared dependency component or set
of components, and

{ For each SCj, SCj appears in the range of only one composition
component, and

{ All shared dependency components are in the range of M.

Thus a composition is a set of source components (in the required speci�ca-
tion form) and a mapping from those source components to shared dependency
components. The composition satis�es a shared dependency speci�cation when
all of the source components satisfy all of the speci�cation components.

A Composition C of components C1 : : : CN and Map M satisfy a Shared
Dependency Speci�cation SD of components SC1 : : : SCM if and only if

{ Map M is well-formed, and

{ For each Ci, Ci satis�es M(Ci).

The well-formedness of the map guarantees that all the components in the
shared dependency will be satis�ed either by simple satisfaction or by aggregate
satisfaction by the source components in the composition.

We note that we can form a single shared dependency speci�cation from a
set of such speci�cations by applying the empty set of equations to those sets.
As we argued, this reduces the set of a single speci�cation with independently
related sets of components. We can then apply one large composition to the
entire set. Alternatively, we could combine sets of compositions that have been
independently applied to their respective shared dependency speci�cations. To
achieve the same results as the �rst alternative, we would need the additional
constraint that all the compositions be disjoint.

6 Summary

In my prior work I was concerned about the syntactic well-formedness of system
compositions, the semantic consistency of interface speci�cations, the semantic

interconnections created in system construction, and the semantic relationships
between individual interfaces.

Here, I have presented a structure and method for specifying interrelated
components that share some semantic aspect of a computation. My claim is that
only with this extra information can one properly evolve the components that
we use on constructing systems. Not only do we need to know the dependencies,
but we also need to know the context of those dependencies. Shared dependency
speci�cations provide a means of describing these contexts. Moreover, it is this
sort of shared dependency information that enables us to systematically and
e�ectively evolve our software systems: they provide us with the means of iden-
tifying some of the implications of changes to the system and reasoning about
those changes prior to testing them.

This gain in understanding of system evolution comes at a cost: the shared
dependency speci�cations tend to be somewhat large and cumbersome. Amelio-
rating this cumbersomeness is the fact that these speci�cations could easily be
built as an adjunct of the construction and evolution process supported by envi-
ronments such as Inscape with the environment providing much of the mundane
work in capturing these shared dependencies.

It is my claim that the concepts introduced here enable one to e�ectively
reason about both single and multiple component substitution and the e�ects of
those substitutions. Satisfying the shared dependencies, however, is not su�cient
in itself to guarantee consistency of a composition. Something like the semantic
interconnections provided by Inscape during the construction and evolution of
the system are also needed.

References

1. Evan W. Adams, Masahiro Honda and Terrance C. Miller. Object Management in

a CASE Environment. The Proceedings of the Eleventh International Conference

on Software Engineering, May 1989, Pittsburgh, PA. pp 154-163.

2. Don Batory and Bart J. Geraci. Validating Component Compositions in Software
System Generators. Technical Report TR-95-03, Department of Computer Sciences,

University of Texas at Austin, February 1995. Updated August 1995.

3. Ellen Borrison. A Model of Software Manufacture. Advanced programming Envi-

ronments, Trondheim, Norway, June 1986. pp 197-220. Lecture Notes in Computer

Science 244, Springer-Verlag, 1986.

4. Geo�rey M. Clemm. The Workshop System | A Practical Knowledge-Based Soft-

ware Environment. ACM SIGSOFT'88: Third Symposium on Software Development

Environments (SDE3), Cambridge MA, November 1988. In ACM SIGSOFT Soft-

ware Engineering Notes 13:5 (November 1988). pp 55-64.

5. J. Estublier and R. Casallas. The Adele Con�guration Manager. In [19], pp 73-97.

6. Stuart I. Feldman. Make | a Program for Maintaining Computer Programs. Soft-

ware | Practice & Experience 9:4 (April 1979). pp 255-265.

7. A. Nico Habermann and Dewayne E. Perry. Well Formed System Composition.

Carnegie-Mellon University, Technical Report CMU-CS-80-117. March 1980.

8. A. Nico Habermann and Dewayne E. Perry. System Composition and Version Con-
trol for Ada. Software Engineering Environments. H. Huenke, editor. North-Holland,

1981. pp. 331-343.

9. Gail E. Kaiser. Intelligent Assistance for Software Development and Maintenance.
IEEE Software 5:3 (May 1988). pp 40-49.

10. Axel Mahler. Variants: Keeping Things Together and Telling Them Apart. In [19],

pp 73-97.
11. K. Narayanaswamy and W. Scacchi. Maintaining Con�gurations of Evolving Soft-

ware Systems. IEEE Transactions of Software Engineering, SE13:3 (March 1987),

pp 324-334.
12. Dewayne E. Perry. Models of Software Interconnections. Proceedings of the 9th In-

ternational Conference on Software Engineering, March 30 - April 2, 1987, Monterey

CA. pp 61-69.
13. Dewayne E. Perry. Version Control in the Inscape Environment. Proceedings of

the 9th International Conference on Software Engineering, March 30 - April 2, 1987,

Monterey CA.
14. Dewayne E. Perry. The Inscape Environment. The Proceedings of the Eleventh

International Conference on Software Engineering, May 1989, Pittsburgh, PA.

15. Dewayne E. Perry. The Logic of Propagation in the Inscape Environment. Proceed-
ings of the ACM SIGSOFT '89 Third Symposium on Software Testing, Analysis,

and Veri�cation (TAV3), 13-15 December 1989, Key West, FL. Software Engineering

Notes 14:8 (December 1989), pp 114-121.
16. M. J. Rochkind. The Source Code Control System. IEEE Transactions on Software

Engineering, SE-1:4 (December 1975). pp 364-370.

17. Walter F. Tichy. Software Development Control Based on System Structure De-
scriptions. Ph.D. Thesis, Computer Science Department, Carnegie-Mellon Univer-

sity, January 1980.

18. Walter F. Tichy. RCS | A System for Version Control. Software | Practice &
Experience, 15:7 (July 1985). pp 637-654.

19. Walter F. Tichy, editor. Con�guration Management. Trends in Software, Volume

2. Chichester: John Wiley & Sons, 1994.
20. P. A. Tuscany. Software Development Environment for Large Switching Projects.

Proceedings of Software Engineering for Telecommunications Switching Systems

Conference, 1987.

This article was processed using the LaTEX macro package with LLNCS style

