
Using Process Modeling for Process Understanding

Dewayne E. Perry

Systems and Software Research Laboratory, Bell Laboratories, Murray Hill NJ 07901
dep@research.bell-labs.com

Abstract

An important step to improving processes is first
understanding them. I report here a case study in
process understanding using the process modeling
language Interact. I illustrate both the language and
the process iteratively, somewhat in the way it might
actually be done, and then provide the completed
model. I close with lessons to be drawn from this
study about understanding and improving processes,
the flaws in the process that were exposed as a result
of the modeling process and the utility of the
modeling formalism used in exposing those flaws.

1. Introduction

An important step to improving processes is to first
understand what the current processes are [5] and
then use that understanding as the basis for measured
process improvement. The advantage of using a
process formalism as the means of modeling the
current processes is that the formalism encourages
you to think about certain aspects of the process (and
if it is a good formalism, the most important
aspects).

In this paper, I report on an experiment using the
process modeling language Interact [3, 4] as the
means of understanding the current tool release
process for a research group residing in a
development organization. The tools are built on top
of the UNIX operating system and interact with each
other in various ways --- that is, they are either
mutually supporting tools that depend on each other
for their full functionality or they are tools that can
be composed together via scripts to form more
sophisticated tools. In either case, it is of paramount
importance that the release process guarantee that the
tool set plays together properly.

2. Modeling the Process

The tool release process is an informal process used
by a set of researchers who build useful software
development tools. The primary means of process

understanding of this informal process is the process
flow diagram showing the major steps using ‘libx’ as
an example.

I will describe tool release process using Interact as
the modeling language. The various aspects of
Interact will be introduced as we explore various
parts of the modeled process. In a sense this section
will be a dual tutorial on both the modeled process
and the modeling language.

2.1 Overview of Interact/Intermediate

The general goals in Interact and Intermediate are to
support goal-directed process modeling in such a
way to maximize concurrency of activities and to
minimize control of the human element in the
process. To do this, I have separated the model
specification from the enaction — that is, I have
separated the modeling from the support and in
doing so have separated the (mostly) static aspects of
process modeling from the (mostly) dynamic aspects
of model enactment.

Interact provides facilities for defining objects,
policies, and activities: object definitions are used to
model both the product, the project, and the
organization; policy definitions are used to model
various facts and relationships about both the state of
the product, the project and the organization as well
as to define synchronization, interaction and
cooperation abstractions; activity definitions are used
to model the process activities that transform the
product and project from one state to another.
Activities are defined in terms of the activating
policies, the defined goals and resulting obligations.
Where desired, the process designer may bind the
user to a particular implementation of the activity by
supplying some structure to what is normally
considered a primitive entity.

Object declarations include type definitions, type
instances, and object definitions. Types and type
instances enable the process designer to define the
appropriate abstractions that are necessary for the
model and to define the values for those abstractions.
Objects have types and may assume the values



defined for those types. For example, the model of a
software artifact serves as the coordinating object for
the various activities that transform the product from
one state to another; the model of the project defines
the objects by which non-product related
communications take place.

Policies define various facts and relationships among
objects in several different ways. First, policies may
be primitive. These serve as base abstractions which
are asserted as results of activities. Second, policies
may encapsulate logical expressions that relate (in
various ways) base abstractions, facts about the state
of the product or facts about the state of the project.
Finally, there may be multiple policy definitions, any
number of which may be active at any time. These
various definitions serve as one of the primary means
of customization and evolution of the model for
particular instantiations.

Activities then define the basic work that needs to be
done in terms of what must be true before an activity
can be executed (that is, the assumed policies -- the
preconditions -- that must be satisfied), of what is
guaranteed to be true as a result of executing the
process, together with associated obligations placed
on the executor as a result of executing that activity
(the postconditions and obligations — again
specified in terms of policies), and of what the actual
work is that must be done if the implementation is
not defined to be primitive (that is, unspecified and
left to the executor).

2.2 The Project and Product Model

A good place to start in doing any modeling activity
is that of modeling the project and the product [1] to
a level that you think is initially necessary. You may
then refine that model is you elaborate the activities
and policies.

MODEL Release ()
data {
-- Model of the Project --

type role primitive,
type group {person},
type roleset {(person p, role r)},

value role initiator,
value role integrator,
value role submitter,
value role tooluser,
value role builder,
value role shipper,

value person AlexanderWolf,
value person DavidRosenblum,

value person Bala...,
...

object dept group,
object roles roleset,

Note that we do not define a role except by
enumerating it by means of value definitions. A
group is modeled as a set of person (person is a
primitive concept in Interact). A set of roles is
defined as a set of tuples which consist of a person
and a role. Thus a person may have several roles and
a role may be played by one or more persons. We
have also indicated how you would enumerate the
values for the primitive type person by listing its
values.

We then have to define data objects that we use in
the model to contain the actual values of the
department (modeled as a group) and the roles
persons play in that department. The values of these
objects may be specified either at model specification
time (exactly as we have illustrated the values for
several of the types) or at model instantiation time
when the model administrator customizes the model
for execution.

-- Model of the Tools --

type source primitive,
type toolset {tool},

value tool libx,
value tool app,
value tool persi,
value tool yeast,
...

object owner
{(person p, tool t)} [t],

object depends
{(tool t, toolset dtools)} [t],

object testset toolset,
object exportset toolset

}

We model the tools (another basic concept in
Interact) in terms of their source code, who owns
them (that is, who is responsible for them) and which
tools depend on them. Note that in the object
definitions for owner and depends there is the
notation ‘[t]’ — that means that the set is indexed by
by the tool t and hence only own person may be the
owner of a tool (since there can only be one element
of the set for that tool) and that each tool has only
one set of dependent tools. The objects testset and
exportset are used for testing the buildability of a
tool and the accumulated acceptable tools for export,
respectively.



2.3 Activities and Policies in the Model

The easiest place to start the modeling activity once
you have a project and product models in place is the
main piece of work that the process is supposed to
do — in this case, the activity Integrate distributes
the submitted tools for approval and collects those
that have been approved for release. This will enable
us to determine what is needed as support for this
activity and what policies need to be defined for it to
work properly. We can then incrementally expand
the process model from there.

Integrate ()
preconditions { cycle-initiated () }
{

foreach tool t in { tool t  submitted ( p, t ) }
<

Determine-Dependencies ( t ),
let testset’ = testset + t,
Build ( testset’, result ),
( result == false, reject-tool ( SELF, t ),
( result == true,
<

< foreach person p
in { person p  owner[t1] = p and t1 in depends[t] }

instantiate Evaluate ( t ),
>,
Await-Acceptance/Rejection ( t )

>)
>

}
results<( postconditions {

exportset = { tool t  tool-approved ( t ) },
tools-released ( exportset ) },

obligations { }
)>

Integrate (see [4] for a more complete discussion of
the details of this activity and related matters)
requires only that the release cycle have been
initiated to begin. Then for each tool submitted, a
parallel thread (indicated by the delimiters { }
around the foreach statement) of a sequence
(indicated by the delimiters < > as the body of the
foreach statement) is generated that determines the
dependencies on that tool, builds it (and rejects it if it
does not build properly), then instantiates an
Evaluate activity for each owner of the dependent
tools to approve or reject the submitted and built
tool, and finally awaits its acceptance or rejection.

We now have a list of things that need to be
interpreted and modeled: the policies cycle-initiated
and tools-released, and the activities Determine-
Dependencies, Build, Evaluate, and Await-
Acceptance/Rejection. Following our initial
approach of primary work first, let us look at the
policy ‘tools-released’ and what it implies.

tools-released (toolset ts) :: primitive

For purposes of this model we only wanted to look at
what sorts of interactions the various tool builders
have to do to get their tools released, not what the
mechanisms are that followed that creation of the set
of tools for release (that is, the actual mechanics of
distributing the tool set — that is a different
process). Thus, we define the ultimate policy as a
primitive one, one that primarily asserts the fact that
the tool set exportset has been accumulated and
released for distribution.

The policy ‘cycle-initiated’, on the other hand
implies quite a bit more in terms of both policies and
implied actions.

cycle-initiated ( ) ::
< notified ( dept, "Request submission of tools" ) >

Initiating the release cycle means that everyone in
the department has been notified that they are to
submit new versions of their tools. The question
then is how does this come about and what does the
policy ‘notified’ mean. First there is the implication
that the release cycle has somehow been triggered
and that there is some means of notifying everyone
in the department. Thus, we need to define these two
activities. We look at Initiate first.

Initiate ()
preconditions { allow-initiation () }
primitive
results<( postconditions { cycle-initiated () },

obligations { tools-released ( exportset ) }
)>

To begin this process we must determine what it
means to allow initiation of the entire release cycle.
There are two means of initiation: either on the
established 6 month cycle beginning in either May or
November, or whenever it is arbitrarily decided to do
a release. We define these two definitions for
‘allow-initiation’ and either one or both can be in
vogue for that process model instantiation (or it may
even change over time which one is in vogue).

arbitrary-initiation ( ) :: primitive,
allow-initiation ( ) ::

< arbitrary-initiation (),
CurrentDate="1 May" or "1 November"

>

Initiate does not specify how to proceed, but entails
two things: a postcondition and an obligation. The
obligation is that we now need to satisfy the policy
‘tools-released ( exportset )’ and the only way that
we can do that (because of the way we define our
model) is to execute the activity Integrate.



The primary question is how to satisfy the
postcondition of broadcasting the request for
submission message? For that we need an activity
Notify which does precisely that. The most likely
implementation of this activity is an automated agent
— for example, email. The process administrator
would use Intermediate to bind this activity to a
broadcast mailer.

Notify ( group g, message m )
preconditions { }
primitive
results<( postconditions { notified ( g, m ) },

obligations { }
)>

We now must determine what the policy ‘notified’
means and we define that in terms of a more
primitive notification policy, one for individual
persons, which in turn is considered to be a basic
fact, not an interpreted one.

notified (group g, message m) ::
< foreach person p in g: notified(p, m) >,

notified (person p, message m) :: primitive

We still have on our stack of work the basic
activities that we need to implement Integrate. Let
us sketch them out first and then worry about the
associated policies.

Determine-dependencies ( tool t )
preconditions { submitted ( p, t ) }
primitive
results<( postconditions { depends[t] = { tool t1  includes(t1, t) },

obligations { }
)>,

Build ( toolset ts, boolean result )
preconditions { submitted ( p, t ) }
primitive
results<( postconditions {

result == true
tool-built ( t, ts ),
tool-dependencies-notified ( t ) },

obligations { }
),
( postconditions {

result == false
reject-tool ( SELF, t ) },

obligations { }
),
( postconditions {

SELF in { person p  (p, Integrator) in roles },
notified ( owner[t], "Tool %t did not build" ) },

obligations { }
)>,

Evaluate ( tool t )
preconditions { tool-dependencies-notified ( t ) }
primitive
results<( postconditions { approve-tool ( SELF, t ) },

obligations { }
),
( postconditions { reject-tool ( SELF, t ) },

obligations { }
)>,

Await-Acceptance/Rejection ( tool t )
preconditions { submitted ( p, t ) }
primitive
results<( postconditions { tool-rejected ( t ) },

obligations { }
),
( postconditions { tool-approved ( t ) },

obligations { }
)>,

Build requires that the tool first have been submitted
and results in a set of dependencies that have been
set in the data object depends for that tool. It is an
activity that at first sight looks like it ought to be
bound to the appropriate automated agent (ie, tool)
for its implementation, and its results bound to one
of the three possible results of the activity.
However, if we look at the first result, we note that
one of the postconditions is that the dependent tool
owners be notified that the tool has properly built.
This is a case where the results imply what the
implementation must be: a use of an actual build tool
to see if it indeed builds and then the use of Notify to
broadcast the appropriate tool owners.

The remaining two results are those which report the
fact that the tool did not build: one for the normal
build used in private integration and the other for the
case where it is the Integrator who is doing the build.
In the former case, it results in rejecting the tool by
that dependent tool owner; in the latter case, it
results in the Integrator informing the submitter that
the tool did not build. Note that in the latter case, the
Integrator would produce two results instead of just
the one: the second to reject to the tool formally, the
third to inform the submitter that it failed to build.

Evaluate requires only that all the tool dependencies
have been notified and then results in either approval
or rejection. Nothing else is implied about the
implementation of the evaluation activity. Note that
the precondition is satisfied if the too builds properly
(the first result of Build).

Await-Acceptance/Rejection of a tool has two
results: either someone has rejected it who depends
on it, or every dependent tool owner approves its
release. This latter we encapsulate in the policies
‘tool-rejected’ and ‘tool-approved’.

tool-approved (tool t) ::
< foreach person p



in { p  owner[t1].p = p and t1 in depends[t].dtools }:
approve-tool(p, t)

>,
tool-rejected (tool t) ::

< forsome person p
in { p  owner[t1].p = p and t1 in depends[t].dtools }:

reject-tool(p, t)
>,

approve-tool (person p, tool t) ::
< notified({q  (q,Integrator) in Roles}, "%p approves tool %t") >,

reject-tool (person p, tool t) ::
< notified({q  (q,Integrator) in Roles}, "%p rejects tool %t") >,

tool-dependencies-notified (tool t) ::
< do = { p  owner[t1].p = p and t1 in depends[t].dtools } and

notified (do, "Tool %t successfully submitted - Evaluate %t")
>

Note that tool approval and rejection imply that the
Notify activity has been executed to inform the
Integrator that the tool is either approved or rejected.
Similarly, the same is implied to achieve the policy
‘tool-dependencies-notified’.

This leaves us with one policy that is the assumption
of three of the above activities: ‘submitted ( p, t )’.
We find that we need an activity Submit to supply
this policy.

Submit ( tool t )
preconditions { submitting ( t ) }
primitive
results<( postconditions { submitted ( SELF, t ) },

obligations { }
)>

The assumption is that the tool owner is considering
submitting the tool for which this activity is the
official act. These two policies then imply other
activities that must take place. In the case of
‘submitting’ the activities are either Consider-
Submission or Consider-Resubmission (of a tool that
had previously been rejected).

submitting (tool t) ::
< notified( {p  (p,Integrator) in Roles}, "Submitting %t") >,

Consider-Submission ( tool t )
preconditions { cycle-initiated () }
primitive
results<( postconditions { submitting ( t ) },

obligations { submitted ( SELF, t ) }
),

( postconditions { not submitting ( t ) },
obligations { }

)>,

Consider-Resubmission ( tool t )
preconditions { cycle-initiated () }
primitive
results<( postconditions { submitting ( t ) },

obligations { submitted ( SELF, t ) }
),
( postconditions { not submitting ( t ) },

obligations { }
)>

Note that their is an obligation for choosing the first
result of each of these activities: that of satisfying the
policy ‘submitted’. An obligation moves the process
along; it obliges us to do another activity to satisfy
that obligation. It is like a liveness condition, it
guarantees that eventually the executor must do
something.

shipped-to-test ( person p, tool t ) ::
< notified({q  (q,Integrator) in roles}, "%p intending to ship %t")

and testset = testset + t
and notified({p  (p,Integrator) in roles}, "%t shipped by %p")

>,
submitted ( person p, tool t) :: < shipped-to-test( p, t) > ,

Ship-to-Test ( tool t )
preconditions { submitting ( SELF, t ) }
<

Notify({person p  (p,integrator) in roles},
"%SELF intending to ship %t")

Copy ( t, testset )
Notify({person p  (p,integrator) in roles},

"%t shipped by %SELF")
>
results<( postconditions { shipped-to-test ( SELF, t ) },

obligations { }
)>,

Copy ( tool t, toolset ts )
preconditions { }
primitive
results<( postconditions { ts = ts + t },

obligations { }
)>

Note that we have supplied the implementation of
Ship-to-Test. We did this primarily to show that
sometimes you will want to constrain the execution
of the activities to a particular order: first notify the
Integrator of intention, doing it, and then notifying
that it was done: < > indicates that the activities are
to be done in sequence. The set of activities is
implied by the postcondition but not the order in
which they are done.

2.4 The Complete Model

MODEL Release ()
data {
-- Model of the Project --

type roleprimitive,
type group{person},
type roleset{(person p, role r)},

value roleinitiator,
value roleintegrator,
value rolesubmitter,



value roletooluser,
value rolebuilder,
value roleshipper,

value personAlexanderWolf,
value personDavidRosenblum,
value personBala...,
...

object deptgroup,
object rolesroleset,

-- Model of the Tools --

type sourceprimitive,
type toolset{tool},

value toollibx,
value toolapp,
value toolpersi,
value toolyeast,
...

object owner
{(person p, tool t)} [t],

object depends
{(tool t, toolset dtools)} [t],

object testsettoolset,
object exportsettoolset

}

policies {
notified (person p, message m) :: primitive,
notified (group g, message m) ::

< foreach person p in g: notified(p, m) >,
notified (role r, roleset rs, message m) ::

< foreach person p in { p  (p, r) in rs }:
notified ( p , m )

>,
arbitrary-initiation ( ) :: primitive,
allow-initiation ( ) ::

< arbitrary-initiation (),
CurrentDate="1 May" or "1 November"

>,
cycle-initiated ( ) ::

< notified ( dept, "Request submission of tools" ) >,
submitting (tool t) ::

< notified( {p  (p,Integrator) in Roles}, "Submitting %t") >,
shipped-to-test (tool t) ::

< notified({p  (p,Integrator) in Roles}, "Intending to ship %t")
and testset = testset + t
and notified({p  (p,Integrator) in Roles}, "%t shipped")

>,
submitted (tool t) :: < shipped-to-test(t) >,
includes (tool user, tool used) :: primitive,
tool-built (tool t, toolset ts) :: primitive,
tested (tool t, toolset ts) :: primitive,
tool-dependencies-notified (tool t) ::

< do = { p  owner[t1].p = p and t1 in depends[t].dtools } and
notified (do, "Tool %t successfully submitted - Evaluate %t")

>,
approve-tool (person p, tool t) ::

< notified({q  (q,Integrator) in Roles}, "%p approves tool %t") >,
reject-tool (person p, tool t) ::

< notified({q  (q,IntegratoR) in Roles}, "%p rejects tool %t") >,

tool-approved (tool t) ::
< foreach person p

in { p  owner[t1].p = p and t1 in depends[t].dtools }:
approve-tool(p, t)

>,
tool-rejected (tool t) ::

< forsome person p
in { p  owner[t1].p = p and t1 in depends[t].dtools }:

reject-tool(p, t)
>,

tools-released (toolset ts) :: primitive
}

activities {

Initiate ()
preconditions { allow-initiation () }
primitive
results<( postconditions { cycle-initiated () },

obligations { tools-released ( exportset ) }
)>,

Notify ( group g, message m )
preconditions { }
primitive
results<( postconditions { notified ( g, m ) },

obligations { }
)>,

Copy ( tool t, toolset ts )
preconditions { }
primitive
results<( postconditions { ts = ts + t },

obligations { }
)>,

Ship-to-Test ( tool t )
preconditions { submitting ( SELF, t ) }
<

Notify({person p  (p,integrator) in roles},
"%SELF intending to ship %t")

Copy ( t, testset )
Notify({person p  (p,integrator) in roles},

"%t shipped by %SELF")
>
results<( postconditions { shipped-to-test ( SELF, t ) },

obligations { }
)>,

Consider-Submission ( tool t )
preconditions { cycle-initiated () }
primitive
results<( postconditions { submitting ( t ) },

obligations { submitted ( SELF, t ) }
),

( postconditions { not submitting ( t ) },
obligations { }

)>,

Consider-Resubmission ( tool t )
preconditions { cycle-initiated () }
primitive
results<( postconditions { submitting ( t ) },

obligations { submitted ( SELF, t ) }
),



( postconditions { not submitting ( t ) },
obligations { }

)>,

Submit ( tool t )
preconditions { submitting ( t ) }
primitive
results<( postconditions { submitted ( SELF, t ) },

obligations { }
)>,

Determine-dependencies ( tool t )
preconditions { submitted ( p, t ) }
primitive
results<( postconditions { depends[t] = { tool t1  includes(t1, t) },

obligations { }
)>,

Build ( toolset ts, boolean result )
preconditions { submitted ( p, t ) }
primitive
results<( postconditions {

result == true
tool-built ( t, ts ),
tool-dependencies-notified ( t ) },

obligations { }
),
( postconditions {

result == false
reject-tool ( SELF, t ) },

obligations { }
),
( postconditions {

SELF in { person p  (p, Integrator) in roles },
notified ( owner[t], "Tool %t did not build" ) },

obligations { }
)>,

Evaluate ( tool t )
preconditions { tool-dependencies-notified ( t ) }
primitive
results<( postconditions { approve-tool ( SELF, t ) },

obligations { }
),
( postconditions { reject-tool ( SELF, t ) },

obligations { }
)>,

Test ( tool t, toolset ts )
preconditions { tool-built ( t, ts ) }
primitive
results<( postconditions { tested ( t, ts ) },

obligations { }
)>,

Await-Acceptance/Rejection ( tool t )
preconditions { submitted ( p, t ) }
primitive
results<( postconditions { tool-rejected ( t ) },

obligations { }
),
( postconditions {

tool-built ( t, testset ),
tool-approved ( t ) },

obligations { }

)>,

Integrate ()
preconditions { cycle-initiated () }
{

foreach tool t in { tool t  submitted ( p, t ) }
<

Determine-Dependencies ( t ),
let testset’ = testset + t,
Build ( testset’, result ),
( result == false, reject-tool ( SELF, t ),
( result == true,
<

< foreach person p
in { person p  owner[t1] = p and t1 in depends[t] }

instantiate Evaluate ( t ),
>,
Await-Acceptance/Rejection ( t )

>)
>

}
results<( postconditions {

exportset = { tool t  tool-approved ( t ) },
tools-released ( exportset ) },

obligations { }
)>

}
EndModel Release

3. Lessons Learned

There were a number of interesting lessons learned
about the process we modeled, about the process of
using a process formalism to understand processes,
and about the utility of the formalism itself.

3.1 Lesson 1: Understanding and Modeling are
Iterative, Interacting and Concurrent
Processes

There were two strands running in parallel in this
case study: the strand of trying to understand and
formalize the tool release process and the strand of
understanding the process formalism and how it
could be used to model the process. This is often the
case during the initial phases of process
improvement in trying to define the process as it is
and using a new technique for defining the processes
and reasoning about the processes.

The process of modeling itself is an iterative one,
especially in this case where there are three logical
parts to the model: the submodels of both the
product and the organization, the policies that are
used within the processes, and the activities that
carry the bulk of the work. This is compounded by
the iterative nature of deepening the understanding
the existing processes that is going on concurrently
and interacting with the process of modeling the
release process.



I have tried in the presentation to illustrate some the
kinds of iterations that might take place showing
how the definition of an activity causes an iteration
over required activities and policies. For this
example, the project and product model remained
static, but very likely you will have to iterate over
them as well.

3.2 Lesson 2: Limiting the Process to
Understanding takes Discipline

One of the hardest things we found in this study was
to keep our attention focused on trying to define the
process as it existed. We constantly found ourselves
trying to define a model of what it ought to be rather
than what it was. I think the main reason for this is a
natural one: as one discovers the flaws in the process
there is a tendency to want to correct them,
especially if the solutions are seen as obvious ones.

Thus, we found it very hard to separate the process
of improvement from the process of understanding
the process as it is. We had to keep pulling
ourselves back to the narrow focus of the original
intent. Obviously, we kept track of what we
considered to be problems with the current processes
and what we thought of as solutions to these
problems. We strongly encourage you to do the
same. But, we also feel strongly about the need to
document the existing process so that there is a firm
basis for defining and measuring the various changes
to the processes that will arise from this exercise.
Baseline it first [5], then improve it by substantiated
and measured changes [2].

Projecting into the future of our enterprise, I would
also extend this lesson: limiting improvements to
substantiated and measured ones takes discipline as
well. It is all too easy to rely on your intuition (even
as accurate as it may be) and anecdotal evidence
(even as good as it seems to be) as the basis for
process improvement. As a cautionary word,
remember that organizational and technological
factors are also critical in process improvement [6].

3.3 Lesson 3: Modeling Enabled Us to Find
Serious Flaws in the Process

The flaws discovered in the process of understanding
came in several flavors from problems about how to
organize the process, through somewhat obvious
omissions in critical policies, to very subtle problems
about tool interdependencies.

One of the problems about process organization was
that the definition of roles and their use in the

process, and the people that filled those roles. The
problem was that they did not have a clear view of
how a role should function. Indeed this is a serious
problem since there are at least a dozen ways in
which one might define the function of roles in
processes. For example, a role might mean any one
of the following things:

• the embodiment of a process — this is the
definition of a role as we find it in a craft: an Xr
is one who has been apprenticed in the arts of X
and has demonstrated that he or she has mastered
the materials and processes of doing X;

• a job description — an X is one who does ... and
as such aligns with job categories and hiring
practices;

• a set of activities — for example, a designer is
one who does design and in this view the
definition tends to be finer grained than the
preceding;

• a particular responsibility — finer grained yet
where we have document reviewers, moderators,
etc;

• an execution list — this separates the role from
the process and defines the role in terms of the
activities that must be executed;

• a permission list — slightly different from the
one above in that the role is not required to
execute the activities, but allowed to if desired;
and

• an abstraction for people — a minimal definition
to hide the fact that people get reassigned or that
more than one person may actually do it and as
such functions like a variable in a program that
can take various values at various times due to a
binding mechanism.

A case of a rather obvious omission was the fact that
testing was not a necessary part of the acceptance
evaluation. One could accept or reject a tool for
release without actually testing it. This was a case of
too much reliance on the ‘‘reasonable person’’
principle.

A number of serious issues arose in handling the
subtle interactions between the tools. This is
primarily because there was not a good model of
interdependencies among the tools and the evolution
of those interdependencies over time. Thus there
were serious problems in that resulted from this
deficient dependency model:



• tools could be released that were dependent on
tools not shipped;

• there was no way to indicate shared
dependencies; and

• many dependencies were implicit, not explicit,
and as such not caught by the dependency model.

One further important omission was that concerning
versions and configurations. There was only one
version: the current one. That alone causes serious
problems distinguishing between the currently
exported version and the new one submitted for
approval. There is nothing in the model that
distinguishes between these two. The other major
problem resulting from this is that the release
process focuses on the release of individual tools, not
on the release of consistent configurations.
Moreover, the process of approval is time dependent
since a later submission might break earlier approved
tools and hence be rejected without any requirement
that the earlier approved tools be fixed in order for it
to be accepted.

3.4 Lesson 4: An Emphasis on Policy and
Product Directed Modeling was Extremely
Useful

While part of any understanding comes as a result of
merely thinking about the process no matter how,
uncovering a number of problems can be attributed
explicitly to the formalism of Interact.

Interact requires three primary sections to be part of
the model: a data model section (used to model the
artifacts, the project and/or organization, etc as well
as process state), a policy section in which to define
the important policies that define various
assumptions and goals and govern the execution of
activities, and the activities themselves (where the
emphasis is on assumptions and goals rather than
just on implementations).

The focus on data modeling of the artifacts
uncovered a number of the problems relative to the
subtle interactions of interdependencies. More
accurately, the lack of a sufficient model was the
cause of these problems. The artifact model was too
simple for the reality of the various kinds of
interdependencies.

Another deficiency in the project model is the lack of
any notion of deadline. Thus in the activity
Integrate, there is no notion of how long the loop
should go on waiting for tools to be submitted and
evaluated.

The focus on policies was instrumental in
uncovering several serious shortcomings in the
release criteria. One such policy is related to the
model deficiency mentioned in the preceding
paragraph: there is a clear policy for when the release
cycle can begin, but there is no policy at all for what
defines the end of the cycle (a deadline, all the tools
having been approved, etc).

Another serious policy deficiency is that there is no
policy about the problems that cause a tool to be
rejected and what should be done about them:
whether they should be fixed, how they should be
fixed, etc.

The focus on activity descriptions was extremely
useful in clarifying activity interdependencies
without overly constraining the process. Where
there are several activities providing the same goals,
the people have a choice of which to do. Otherwise,
the activities are partially ordered according to the
dependencies defined by the activity assumptions
and results (goals).

We saw some example were the implementations of
the activities were given. In one case it was because
of the sequential ordering that was essential but
which would not have been guaranteed by the
resulting policy. In the other case, that of Integrate,
it was to provide the basic structure and to control
the mixture of parallelism and sequentialization in
the activity — to make it easier for the executer to
understand.

4. Conclusions

This study was an exercise in using a process
modeling formalism as the basis for understanding a
process as a prerequisite to improving it. Interact
was extremely useful both in documenting the
process as it exists and in uncovering serious
problems with the process that need to be fixed.
Thus we consider the exercise to have been
successful both for gaining an understanding of the
process as it exists (and providing ways of
improving it) and for exercising Interact as a means
of process modeling.

Acknowledgements This work would not have been
possible without the help of the other members of the
discussion group at the time of this experiment in
process modeling and understanding: Alexander
Wolf (CU Boulder), David Rosenblum (UC Irvine)
and Balachander Krishnamurthy (AT&T Research
Labs).



References

[1] Ashok Dandekar and Dewayne E. Perry,
‘‘Barriers to Effective Process Architecture’’,
Software Process: Practice and Improvement,
2.1 (January 1996).

[2] Ashok Dandekar, Dewayne E. Perry and
Lawrence G. Votta, ‘‘A Study in Process
Simplification’’, Software Process:
Improvement & Practice, 3:2 (June 1997).

[3] Dewayne E. Perry. ‘‘Policy-Directed
Coordination and Cooperation’’, Proceedings
of the 7th International Software Process
Workshop, October 1991, Yountville CA.

[4] Dewayne E. Perry, ‘‘Enactment Control in
Interact/Intermediate’’, in Software Process
Technology, Third European Workshop,
EWSPT’94, Brian C. Warboys, ed., Springer
Verlag, February 1994 .

[5] Dewayne E. Perry, Nancy Staudenmayer and
Lawrence G. Votta, ‘‘People, Organizations,
and Process Improvement’’, IEEE Software,
July 1994.

[6] Dewayne E. Perry and Lawrence G. Votta,
‘‘The Tale of Two Projects -- Abstract’’,
European Software Engineering
Conference/Foundations of Software
Engineering Conference 1997, Zurich CH,
September 1997.


