
Barriers to E�ective Process Architecture | An

Experience Report

Ashok Dandekar

Fujitsu Network Transmission System

Transmission Development Division

Richardson TX 75082

favdandektddcae99.fnts.comg

Dewayne E. Perry

Systems and Software Research Laboratory

Bell Laboratories

Murray Hill, NJ 07974

fdepbell-labs.comg



Abstract

In trying to understand the architecture of the processes governing the development of a large software
product, we used various techniques for describing, analyzing and visualizing that process system. A \big

picture" visualization of the software development processes yielded a number of cogent observations: I/O

mismatches, large fan ins/outs, no clear path through the project, inconsistency in the level of detail, no
clear architectural organizational structure. We report the results of a quality improvement team (QIT) put

together 1) to determine how the process architecture got to this state, 2) to delineate the base measures by

which we plan to measure architectural improvement, 3) to establish surface and root causes for the current
state of the architecture and de�ne their interrelationships, and 4) to derive primary and secondary process

architecture drivers and to establish counter measures that will yield a more coherent and appropriate process

architecture. As a result of these studies, we o�er some principles learned about process architectures and
generic processes.

Keywords: process system architecture, generic process principles, process architecture principles, process

system architecture problems

1 Introduction

Software development organizations are moving away from software development as a purely craft approach

towards software development as an engineering approach. In doing so, we move from implicit processes and

mystical rites passed from master to apprentice to de�ned and written processes amenable to scrutiny and

measured improvement by the software engineering community.

The current state of practice is generally a set of de�ned processes informally described, often created as a

result of a management edict. Eventually a process management group is created to manage the emerging ad hoc

process system. The barriers we found to an e�ective process system architecture are typical of those one �nds

in similar software development organizations.

Process system architecture is a very young �eld and in the main a very immature one, poorly understood

with little experience and little understanding. Our attempts to create a coherent process system architecture in

many cases push the state of the art and in some cases push the state of research as well.

We describe the current state of the process architecture and delineate the base measures by which we measure

architectural improvement. We then discuss our analysis of surface and root causes and de�ne their interrela-

tionships. From this analysis we present the primary and secondary process architecture drivers and report the

counter measures that we have established and discuss the progress that we have made on these countermeasures

to establish a more coherent and appropriate process architecture. Finally, we summarize some principles about

generic processes and process architecture that we have learned from our study.

2 Current State and Base Measures

Our current process architecture is implicit in the set of (more or less) independently de�ned processes that

govern the production of a large, real-time system from initial marketing interactions with customers through

software development and veri�cation through to �nal customer support. These processes are de�ned in a set of

on-line manuals in which the processes are described informally in a highly structured format.

In trying to understand the architecture of the processes governing the development of a large software

product, we used various techniques for describing, analyzing and visualizing that process system [Perry 1994]

[Carr, Dandekar and Perry 1995]. The \big picture" visualization of the software development processes yielded

a number of cogent observations: I/O mismatches, large fan ins/outs, no clear path through the project, in-

consistency in the level of detail, and no clear architectural organizational structure. A quality improvement

team (QIT) was put together to address the lack of a coherent process system architecture | an architecture

with components that do not �t together, components that are unnecessary, components that either duplicate or

overlap each other, and a structure that is not well controlled.

We �rst drafted a problem statement to summarize the current state of the process architecture:



The existing process architecture is complicated, incomplete, and contains redundancy, thus mak-

ing interactions between processes di�cult to understand and control. This limits the potential for

reductions in cost and interval.

Further details of the current state of our process system architecture are found in the discussions below.

Given the problem statement, we then de�ned a set of metrics to be used as the basis from which to measure

any improvement achieved by our projected countermeasures. These base measures are those provided by pichk

[Carr, Dandekar and Perry 1995], a suite of tool fragments that analyze the process interface descriptions and

their interrelationships. The kinds of analyses and summaries produced include data on the average interface

structure of the processes, the consistency of the interface speci�cations, the interface errors found, and data on

the production and use of the process artifacts.

3 Root Causes and their E�ects

The quality improvement process (QIP)1 requires that we �rst determine the underlying root causes to explain

why the process system architecture is in the state it is in. Given that set of root causes, we then prioritize them

with the aid of interrelationship diagrams (IRDs) and determine their interdependencies. The root causes in their

prioritized order are

� no global management of the process system,

� no coherent process system structure,

� no support for process execution,

� no standard de�nitions and terminology,

� process in
exibility,

� inappropriate process documentation,

� inadequate customer-added-value focus, and

� processes represent organizational structure.

We will consider each of these root cause and discuss their e�ects on the process system architecture.

3.1 No global management of the process system

The initial result of this root cause is that the process architecture came into being in an uncontrolled way. It

was not planned and no one laid out what the process architecture ought to be. Management decided (rightly)

that processes were important and ought to be documented. What was documented was what was going on at

the time of the documentation, not by a process engineering sta� allocated for the job, but by the current sta�

as an additional task. Ameliorating this e�ect is the fact that process system architecture as a whole is poorly

understood, even in research: it is an immature �eld with little extant experience and understanding.

As a result, processes developed independently created by teams acting in isolation. This localization was

encouraged by two factors: there was no overall strategy or general goal, and organizational boundaries encouraged

such isolation. Moreover, this localization spreads to cost reductions, optimization of the processes, the de�nitions

of process artifacts, and the management of process tasks (that is, process control).

An inevitable result of the lack of global management is that the process system only expands, it does not

contract. Process teams are created but are not destroyed, nor do their processes die. There is no incentive to

reduce the bureaucracy, only to expand it.

Because of this balkanization, there is no management of the interfaces and no global considerations of process

artifacts that are the means of communication and coordination between processes. In fact, there is no formal

1
This is the standard quality process used throughout this development organization.



view of what a process interface is. The process management teams (PMTs) develop and act locally and create

their own interfaces from a local view.

With no control of the \big picture", it is not surprising that there is no planned evolution. Process changes

are made because they are due, generally as a result of low priority, and tend not to be well-planned and well-

considered. Moreover, there are no process metrics to serve as the basis for improvement.

An important e�ect is that the �delity of execution to the de�ned processes is not enforced. There is no means

of enforcement and no priority provided to guide the process executors when con
icts arise.

Compounding all these problems are two further factors. First, the current architecture is the merger (in many

cases, the union) of the process systems of two organizations who build similar products. Second, the current

system is in a state of dynamic change in which interval, cost and quality factors are changing to respond to

market demands.

3.2 No coherent process system structure

Since the process system grew in an an hoc manner, it is not surprising that there is no coherent process system

structure. Nor is it surprising that the entire structure is 
at | that is, there is no hierarchy to the process system.

Similarly there is no di�erence in the levels of detail, even though it is quite clear that a single level does not meet

all the varied needs in process support. Yet despite this 
atness, the various process descriptions are written at

di�erent levels of abstraction.

Consistent with the 
atness of the system is the fact that all process executors and all process customers are

consider to be equal | that is, there is no sense of priority or ranking of importance. There is neither a distinction

between essential and supporting tasks, nor any di�erence in the ways process artifacts are treated or used.

Another result of the ad hoc growth is the duplication of process tasks: just as there is duplication in large

software systems, so is there duplication in large process systems. In some cases this duplication results from lack

of proper decomposition; in other cases it is merely the result of inattention to what else has been done.

Finally, there is no end to end traceability of either the processes executed or the artifacts produced.

3.3 No support for process execution

The e�ects of this root cause appear in three di�erent aspects of process: lack of automated support, lack of

appropriate descriptions, and lack of buy-in by those who are supposed to execute the processes.

Process descriptions are weak in de�ning who is responsible for doing what | that is, roles are not associated

with particular aspects of the processes. Compounding this problem is the fact that in many cases, the process

descriptions do not re
ect the actual process work.

It is often the case that process are viewed as intrusive rather than supportive, something that hinders rather

than augments the e�ectiveness of the developers. Moreover, it is often the case that the most productive people

do not follow the written processes, either because they are inappropriate or because they have more e�ective

processes.

3.4 No standard de�nitions and terminology

Given the informal nature of the process de�nitions, the number of processes and the size of the organization,

it is not surprising that there is no standard set of de�nitions or terminology. Each process de�ned its processes

in terms of its local vocabulary | for example, there might be �ve di�erent ways of referring to a single artifact.

While there is a certain amount of commonality centered around the primary product and the core processes that

produce it, those processes are a relatively small part of the entire process system. Beyond that basic core, there

are many disagreements about the de�nitions of the process artifacts that are the inputs to and outputs from the

various processes.

The most profound e�ect of this lack of standard de�nitions and terminology is the lack of a well-de�ned

distinction between what is a task, a subprocess, and a process. We have no underlying model that provides a

rationale for distinguishing one from the other. Consequently, we have no crisp way of distinguishing between

procedures and guidelines either. Nor do we have either a crisp de�nition of what a role is or a description of

them.



The fact that we do not have agreed upon de�nitions of processes implies that some of the process management

teams (PMTs) are not really PMTs, but links to other groups or links to tasks or procedures.

3.5 Process in
exibility

There are a number of ways in which process descriptions are in
exible or not adaptable. First is the problem

of scale. The factor of scale a�ects both the relationships between processes and they way they interact. We try

to make `one size �ts all' both in the way processes relate to each other and they way in which they interact.

This is a much too simplistic approach. We need a rich set of interactions and relationships as part of our arsenal

to successfully attack the problems of scale. Second, we are unable to deal with new technology easily. This

is related to the lack of abstraction levels in that we bind tools into our processes rather than abstract them

to a lower level. Third, process descriptions incorporate project plans and are not easily adaptable to di�erent

projects or to projects of di�erent sizes. Finally, processes are often too complicated to execute 
awlessly and as

a result are also too complicated to be adapted easily.

3.6 Inappropriate Process documentation

It is often the case that informally descriptions tend to be overly verbose. Our process descriptions are not

exceptions this tendency. The template we use encourages verboseness. Further, this verbosity is the result of

several factors. First, the process descriptions tend to be too detailed in that they de�ne what to do as well as how

to do it. This is a particularly thorny research issue: the balance between what to do and how to do it. Second,

processes tend to be all at one level, the lowest one possible, rather than structured in levels of abstraction. Both

of these factors are compounded by the fact that process descriptions tend to describe how to write a document.

In addition to being too detailed and wordy, they also tend to contain more than is necessary and do not

succeed in separating concerns properly. For example, process inputs and outputs tend to re
ect benchmarks in

a project rather than just I/O in a process | that is, project management plans are embedded into the process

descriptions and they should be kept separate. Another aspect of this is that production and management tasks

are often mixed together in the same process rather than being separated into their appropriate spheres of concern.

3.7 Inadequate customer-added-value focus

Harrington [Harrington 1991], in considering the problem of simplifying processes, advocates characterizing

the various parts of processes as adding either customer value, business value, or no value. Parts that add no

value should be eliminated; parts that add business value should be scrutinized to make sure they are necessary;

and parts that add customer value should be emphasized.

One e�ect of this lack of customer focus is that processes are often developed without knowledge or under-

standing of customer requirements, and without an awareness of business and market imperatives. Most processes

add at least business value (that is, are necessary to maintain a product, etc.) but there is still insu�cient focus

on customer value added activities.

3.8 Processes represent organizational structure

Processes are (often) aligned with existing organizational boundaries partly because that is the easiest way

of doing it. The organizational boundaries were already in place when the processes were de�ned and, in fact,

provided the implicit process structure before we had formalprocess documents. Moreover, budgets are distributed

over organizational boundaries, not process boundaries.

It is not surprising then that process teams re
ect organizational structure as well and not the actual work

that needs to be done. Given this initial seeding of the process teams along organizational lines, there also has

not been much e�ort or incentive to extend the teams beyond these organizational lines. Furthermore, there is

not much incentive to belong to a process team outside your own organization.

Of course, there is the age-old problem of empire building that contributes to this problem. It is the organization

that controls what people, and this control is implicitly part of their process.



As with most software development organizations, the organizational structure is a product organization.

Strengthening this tie is the fact that products tend to be tied to particular markets. Still, the utility of this

kind of organizational basis has not been questioned and needs to be addressed in the context of both process

and product structures.

As with the root cause of no global management, the process system merge complicates the e�ects of this root

cause. While some processes were in fact merged, many were not. This lack of merging was due to the fact that

the corresponding similar organizational parts did not merge.

4 Process Architecture Drivers and Countermeasures

Using interrelationship diagrams derived from the root causes, we determined that there were three primary

architectural drivers and two secondary ones. The primary drivers are

� processes represent organizational structure,

� no global management of the process system, and

� no standard de�nitions and terminology.

The secondary drivers are

� no coherent process system structure and

� inappropriate process documentation.

The �rst primary driver is something that is exceedingly di�cult to do anything about at the level of the

process management team, except to be aware of the impact of organizational structure on processes and process

structure. Ideally, one would like to see a process driven organizational structure | an approach that is extremely

unlikely to happen since an organizational structure is driven from the top levels of management downward and

the process structure tends to be driven from the bottom levels upward.

The other two primary drivers and the secondary drivers are within the realm of the process management

team's control. It is in the context of these remaining drivers that we propose eleven countermeasures that we

considered to be e�ective in combating the fundamental problems that underlie our lack of a coherent process

system architecture.

1. De�ne and control process interfaces

2. Model and de�ne the overall process system structure

3. Introduce life-cycle management for processes

4. Continuously monitor and evaluate the process management teams

5. Improve documentation of processes

6. Relate process to product

7. Re
ect the work done

8. Have short and long term goals for process improvement

9. Focus on process in addition to product

10. Develop goals, sta�, and empowerment

11. Reward process work



Countermeasures 1 through 4 are aimed at countering the lack of global management of the process system and

the lack of a coherent system structure by establishing four important global strategies. These countermeasures

will be the responsibility of a Global Process Management Team| a level of process management that has yet to

be created, but which will have global authority over the process system. The de�nition of process interfaces and

the overall process architecture is central to the global control of the process system, while life-cycle management,

in the context of continuous monitoring and evaluation, is central to the evolution of both the process system and

the individual processes. Moreover this team is responsible for standardizing the de�nitions and terminology as

a necessary precondition to the control of process interfaces.

Countermeasures 5 through 7 are aimed at countering the lack of appropriate process documentation. Getting

the documentation of the processes to be at the right level of abstraction and detail is fundamental to this goal.

In achieving this desired level, it is important that the processes are directly correlated to the product which the

processes govern | that is, the processes should be product-centered since its production is the entire raison

d'etre for the processes. While there is a �ne line between the processes as prescriptions rather than descriptions,

it is important that the processes re
ect the work that must be done. This implies that there are two factors at

work: �rst, the processes are changed when they do not re
ect necessary work; second, people are changed (that

is, they are encouraged, guided, managed, etc) when they do not do the necessary work. These countermeasures

are carried out by the existing individual process management teams.

The last set of countermeasures (8-11) are aimed at providing an appropriate cultural setting for process

work and improvement. Rewarding process work, with the same reward structure as exists for work on the

software system being developed and evolved, is fundamental to an e�ective culture for process work. Having an

appropriate set of both short and long term goals, su�cient sta� together with the empowerment to implement

them, is also necessary for an e�ective supporting culture. These countermeasures are the responsibility of the

leadership team and are fundamental in achieving success in the other countermeasures.

5 Progress

We are systematically working towards a coherent process system architecture. We have created a hierarchical

process structure by creating domain-speci�c clusters of processes as the top level in the hierarchy. The general

goal for each of the clusters is to simplify both the internal structure (that is, the interfaces and interrelationships

between the processes within the cluster) and the external structure (that is, the inter-cluster interfaces). As part

of that e�ort we have been experimenting with various ways of doing process streamlining and simpli�cation.

Concurrently with these e�orts, we are creating a new form of presentation and representation of the process

descriptions.

6 Some Principles

As a result of our work in trying to understand process system architecture, we have distilled a small set of

principles for process descriptions and for process system architectures.

Given the fact that the current process system was the result of the merging of two process systems and the fact

that there is a trend within most companies for the consolidation of product lines, moving from individual products

to product families with interchangeable parts, we have concentrated on the problems of generic processes. We

o�er the following principles for achieving what we consider to be the appropriate level of descriptions for generic

processes.

1. De�ne process fragments. Instead of monolithic process descriptions, use process fragments that can be

combined in various ways according to the needs of the speci�c project.

2. De�ne fragments in terms of their goals. Rather that describe the implementation of a particular process

fragment, de�ne what the fragment is meant to achieve. The person executing the process can supply the

appropriate implementation.



3. Use appropriate means of abstraction (or generalization). One of the standards forms of abstraction is that

of parameterization: abstracting values, types, objects, functions, etc. There are several other forms of

abstraction that are also useful: primitivation and strati�cation. Primitivation is that form of abstraction

that requires elaboration before execution: the actual implementation is left to the process executor and is

bounded either by a formal grammar or by the existence of the available building blocks. Strati�cation is

that form of abstraction by which we layer a system. In this case we recommend abstracting the methods

and tools layers from the generic descriptions.

4. Align activities with their appropriate processes. All too often, you �nd project management activities

described as part of technical processes. For example, estimating coding e�ort is usually a part of the

description of the coding process. Note, however, it is a project management activity and should be part

of the project management process description. Moreover, it is probably a generic activity that could be

parameterized for the appropriate development phase.

5. Separate project structure from process structure . Nothing makes a process less applicable to another

project that to embed project speci�c data into the process descriptions. We note that there are three

project related aspects that are often included in process descriptions:

� project milestones and schedules,

� project roles, obligations and permissions, and

� the project's organizational structure.

Based on our work here together with our work in process system visualization and analysis [Carr, Dandekar and Perry 1995],

we o�er the following principles for process system architecture. Not surprisingly, these principles are akin to

those useful for software product systems as well.

1. Modularize processes. In much the same way we modularize software systems, we should modularize process

systems. Only by segmentation into manageable parts can we hope to cope with the entire system.

2. Encapsulate domain-related activities. Rather than just arbitrarily cutting up the processes into pieces, we

need a rationale for the segmenting of the process system. How �nely you divide the domains is a design

decision but one that should be guided by comprehensibility.

3. Decompose processes hierarchically. As with software systems, we decompose our process systems into layers

of increasing detail, moving from the more general to the more particular.

4. Explicitly de�ne the relationships among processes. It is in this principle, that we di�er most from the

principles needed for software systems. Where there, we have only a limited number of formally de�ned re-

lationships that are supported by our programming and system model languages, here we have an unlimited

number of informally de�ned relationships. Making those relationships explicit is extremely important.

Acknowledgements

This work would not have been possible without the un
agging support of Al Barshefsky and the active

contributions of the other members of the quality improvement team: Dave Smith, Mike Meuer, Tave Lamperez,

Dave Carr and Janel Green.

References

[Carr, Dandekar and Perry 1995] David C. Carr, Ashok Dandekar, and Dewayne E. Perry. \Experiments in Pro-

cess Interface Descriptions, Visualizations and Analysis", Software Process Technology | 4th European Work-

shop, EWSPT'95 Wilhlem Schaefer, ed. Lecture Notes in Computer Science, 913, Springer-Verlag, 1995. pp

119 - 137.



[Perry 1994] Dewayne E. Perry. \Issues in Process Architecture", Proceedings of the 9th International Software

Process Workshop | The Role of Humans in the Process, October 1994, Airlie VA. IEEE Computer Society

Press. pp 138 - 140.

[Harrington 1991] H. James Harrington. Business Process Improvement. New York: McGraw Hill, 1991.


