
The Logic of Propagation in The Inscape Environment

Dewayne E. Perry
Computing Systems Research Laboratory

AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract

The Inscape Environment research project addresses issues in
supporting the development of large systems by large numbers
of programmers. One aspect of this research is the ‘‘construc-
tive use’’ of formal module interface specifications - that is,
given that you have formal specifications, what can you do with
them. In Inscape, the specifications form the basis for providing
an environment that is knowledgeable about the process of
developing and evolving software systems, an environment that
works in symbiosis with the programmer to develop and evolve
a software system.

In this discussion, I present how Inscape uses operation
specifications (based on Hoare’s input/output predicate ap-
proach) as the basis for synthesizing the interfaces for such com-
plex languages statements as sequence, selection and iteration.
In each of these statements, the synthesized interface is a func-
tion of the component interfaces.

I first present the basic rules for interface specification use and
the logical framework for interface propagation and error detec-
tion. I then define the rules for propagating the interfaces for se-
quence, selection, iteration and operation. Finally, I define no-
tions of ‘‘implementation completeness and correctness’’.

1. Introduction

The Inscape Environment [1] is a research project that is
centered around two orthogonal concepts:

• the constructive use of module interface specifications, and

• environmentally supported crowd control.

Inscape is an experiment in developing a city model [2] software
development environment that is based on the practical use of
formal specifications in the context of large software system
development by large groups of people. In this context, I am
concerned about three major problems [3]: complexity,
evolution, and scale. Complexity is one of the fundamental
problems discussed by Brooks in his ‘‘No Silver Bullets ...’’
paper [4]. It manifests itself in three different ways: in the
intricacy of detail, in the wealth of detail, and in the invisibility
of both the intricacy and the wealth of detail. It is this last
aspect of complexity, invisibility, that is a major focus of my

_ ____________________

Inscape research — that is, making the invisible and implicit
details visible and explicit. Evolution is an extremely important
aspect of software systems that has not received its proper
consideration. It is not caused by the fact the ‘‘we have not got it
right the first time’’; it is a basic, fundamental problem in long-
lived software systems. Scale is another important problem that
is underconsidered as far as supporting tools and environments
are concerned — the state of the art in SDEs with respect to the
problems of scale is embodied in individual and family model
SDEs.

One of the main directions of research in the Inscape project is
that of making practical use of specification and verification
technology — that is, providing a way of constructively using
specifications to assist in managing the problems of complexity,
evolution and scale. This practicality is accomplished in several
ways:

• by using formal module interface specifications in the
construction of software systems,

• by using a semantic interconnection model [5] in which unit,
syntactic and semantic dependencies are determined and
maintained, and

• by making practical trade-offs in the areas of logic and
analysis (for example, how weak a logic can be used for
specifications, or how strong can incremental consistency
checking be made and still be used in an interactive
environment?).

The focus of this paper is on one aspect of Inscape’s logic and
analysis: the logic of propagation, the synthesis of interfaces,
and the determination of semantic errors in using interfaces.

In Section 2, I discuss Inscape’s interface specification language,
Instress, and discuss various aspects of incremental analysis.
Issues of incremental analysis within Inscape are discussed in
Section 3. In Section 4, I present the logic of propagation, first
providing some motivation and intuition. Then, in Section 5, I
define the rules for propagation within a sequence (that is,
enforcing the consistent use of interfaces and determining
semantic errors), and the rules for synthesizing the interfaces for
sequences, operations, selection, and iteration. I define notions
of completeness and correctness in Section 6 and summarize my
results in Section 7.

2. The Constructive Use of Interface Specifications

Instress is the module interface specification language for
Inscape and consists of the following components:

• the specification logic (SL)1 in which predicates are defined

that provide the basic, formal vocabulary for describing
interfaces,

• C syntax for declaring interface objects (for example, types,
shared data, and operations),

• SL annotations for defining the properties of data objects and
the interface behavior for operations, and

• pragmatic information to assist the user of the interface.

The specification of interfaces is based on Hoare’s input/output
predicates [6]. I extend Hoare’s approach in two ways: by
adding the notion of obligations as a part of the result
specification and by providing the specification of multiple
results.

Hoare [7] states ‘‘if the assumptions are falsified, the product
may break, and its subsequent (but not its previous) behavior
may be wholly arbitrary. Even if it seems to work for a while, it
is completely worthless, unreliable, and even dangerous.’’
There are indeed some assumptions whose falsification leads to
arbitrary, unpredictable behavior. However, in robust, fault-
tolerant software, there is a class of assumptions where wholly
predicatable results are produced when the assumptions are
found to be falsified: those whose failures result in exceptions
[8]. For this reason, we provide the explicit specification of
exceptional results in addition to normal results.

Side-effects are a basic fact of programming in Algol-like
languages. Hoare’s approach provides a good vehicle for
capturing most of the side-effects that occur. However, there are
some subsequent actions that are entailed (as side-effects) as the
result of executing a piece of software that are not describable as
postconditions. As an analogy, consider obtaining a loan from a
bank: the postcondition is that you have the money in hand; but,
you also have an obligation to pay the money back as a result of
obtaining the loan. Similarly, opening a file, or allocating a
buffer, have side-effects beyond the facts that the file is opened,
or that the buffer is allocated. An obligation exists to close the
file, or to deallocate the buffer.

Thus, Inscape provides the following extension of Hoare’s
paradigm:

Preconditions
{ Program }

Postconditions, Obligations
. . .
Postconditions, Obligations

Since the mechanisms for propagation are the same for both
normal and exceptional results, I will consider only the normal
exit result in the remainder of this paper.2

3. Incremental Analysis

My primary strategy in Inscape for managing the problems of
evolution and scale in software systems is that of static
incremental analysis using the interface specifications.3 The
specifications provide a bootstrapping mechanism: assume that

_ ____________________

1. The form of SL is one of my current investigations.

2. For a more complete treatment of these specification issues see my paper ‘‘The
Inscape Environment’’ [1].

3. Anna [9], the annotation language for Ada, on the other hand, provides
dynamic analysis of annotations embedded in both interfaces and
implementations. Inscape is concerned only with the static analysis of interface
specifications and the propagation of those interface elements throughout the
implementation.

they are correct and use them; when they are found to be
incorrect, change them and determine the implications of those
changes.

Incrementality occurs at two different levels: the gross grain of
increment is the operation (that is, a function or procedure, the
collection of which together with data objects comprise a
module); the fine grain of increment is the language statement.

By making a function or procedure the gross-grain increment,
we eliminate the need to consider a system as a whole.
Assuming that interfaces are correct and enforcing their
consistent use provides one-half of the equation that eliminates
this need for analyzing the entire system. The propagation, or
synthesis, of the interfaces from the implementations of
operations provides the other half of the equation.

The fine-grained increment in Inscape is the individual language
statement. For complex statements such as sequence, selection
and iteration, Inscape synthesizes the interface from their
component parts. Describing this synthesis is the main purpose
of this paper. The goal has been to generate the interfaces for
these statements as independently of their context as possible.4

In this way, changes that result in a change to a statement
interface can be handled independently and propagated only to
the appropriate context.

To show how this is possible, consider the following intuitive
‘‘picture’’ of how preconditions and postconditions interact:
postconditions ‘‘sink down’’ through the implementation and
represent the current state of the computation; preconditions
‘‘float up’’ through the implementation ‘‘looking’’ for
satisfaction by postconditions. At the point where a
precondition P occurs (for example as the precondition in an
operation that is called in the implementation), either P is known
to be true or false, or it is not known whether it is true or false.

• If P is true, then the precondition is satisfied and does not
need to ‘‘float up’’ looking for satisfaction. Further, where P
becomes true as a postcondition is not relevant either, at least
as far as whether it is true or false.

• If P is false, then the precondition is not satisfied, but neither
can it ‘‘float up’’ looking for satisfaction. It has hit a logical
barrier, a precondition ceiling. Thus, where in the preceding
context P becomes false is not relevant either.

• If it is not known whether P is true or false (that is, there is
no reference to P whatsoever), then it is unknown in all of
the preceding context as well, so that one does not need to
consider the interior of preceding contexts at all (that is, the
components of sequences, iterations or selections).

Thus, we can treat the implementation of an operation, a
sequence, a selection, or an iteration as a black box. We need
only to consider the interface of the individual statement.5

_ ____________________

4. We will see below where context is important, but that is where component
parts of a complex language statement are concerned, not where individual
statements are concerned.

5. Unfortunately, obligations are not quite so tractable. As obligations ‘‘sink
down’’ looking for satisfaction, the relationship that holds between
preconditions and postconditions does not hold. Thus, we have to introduce
some extra mechanism for obligations. For this paper, however, we take a
somewhat simplified view to show the general picture.

4. Inscape’s Propagation Logic

I have separated the notions of consistency and propagation to
clarify their different concerns. Consistency checking is one of
the areas where trade-offs must be made in order to make the
environment a practical one. The trade-offs there depend on
how to manipulate the specification logic (SL). Propagation of
the interfaces, on the other hand, depends on trade-offs about
how to statically represent the expanding possible-execution tree
as a converging, directed graph — that is, how to maintain a
single thread of knowledge.6 How this is done will be described
in the next section.

In trying to describe the results of joining two paths of execution
together (as one must do, for example, in treating an IF
statement as an indivisible unit), one is tempted to use the
logical or. For example, if P7 and Q are true in one path, and P
and R are true in the other, one is tempted to describe the results
of joining the two paths as P and (Q or R). However, if later in
the execution path not Q becomes true, the logically valid
inference of R from (Q or R) does not really hold, because in
one of the two possible execution paths, only Q would have been
true and the only thing that we would know as a result is that Q
is no longer true. We would know nothing about R. For this
reason, we avoid the use of or and instead use the notion of a
possible predicate (that is, a predicate that is possibly true or
false rather than known or unknown to be true or false).

Remember that we have separated the notion of consistency
from that of propagation. While the specification logic (SL) is a
form of predicate calculus,8 the predicative structure of its
sentences is ignored (in general) at the level of propagation. I
encapsulate the cases where the structure of the sentences in SL
are important and consider those inferences to be in the domain
of the specification logic (SL) and not in the domain of the
propagation logic (PL). The two operations that are necessary
from SL are:

consistent P is consistent with Q

isknown P is known in Q

The determination that one sentence is consistent or inconsistent
with another is dependent on the consistency checking that is
performed using SL, as is the determination that one sentence is
known in (or can be derived from) a set of sentences. For the
purposes of propagation, we consider these two operations to be
primitive.

Inscape’s propagation logic (PL), then, is a propositional
calculus in which:

• a proposition P is either true (P) or false (¬P)

• the state of a proposition at an arbitrary point in a particular
thread of knowledge is either

unknown P is not known to be either true or false in
any execution path prior to that point

_ ____________________

6. Actually, you have multiple threads of knowledge that eventually converge,
rather than expand, in the same way that the textual form of the program does.
Each result, in a general way, represents a single thread of knowledge.

7. Throughout the paper, I use the propositional symbols P, Q, . . . to represent
sentences. For more explicit examples of what these sentences might be, see
the example in [1].

8. Probably with limited quantification. The exact form of SL is currently being
determined.

known P is known to be either true or false in all
execution paths joined just prior to that
point

possible P is known to be either true or false in at
least one execution path joined just prior to
that point

• there is one sentence connective, and (usually represented by
commas)

• there are the inference rules

+
seq

a sequential addition or join based on the
current state of the propositions

+
par

a parallel addition or join based on the
current state of the propositions

+
con

a sequential addition or join based on the
consistency of the propositions (that is,
based on SL’s notion of consistency)

Intuitively, the sequential addition rule embodies the notion of
temporal sequence in which the more recent knowledge replaces
that which was known earlier in the sequence — that is, in P1
+

seq
P2

• whatever is known in P2 supplants what is known in P1;

• whatever in P1 is unknown in P2 retains its state from P1;

• what is possible in P2 remains so in the result, except where
it is known in P1 (and is thus known in the result);

• however, what is possible in P2 may reduce what is known in
P1 to possible in the result.

Thus, P1 +
seq

P2 is defined as follows (‘‘*’’ represents
‘‘unknown’’, ‘‘known’’ and ‘‘possible’’; ‘‘kno’’ represents
‘‘known’’, ‘‘unk’’ represents ‘‘unknown’’ and ‘‘pos’’ represents
‘‘possible’’):

_ ___
P1 P2 Result_ __ ___

* P kno P kno P
* P kno ¬P kno ¬P
* P unk P, unk ¬P *P
kno P pos P kno P
kno P pos P, pos ¬P pos P, pos ¬P
kno P pos ¬P pos P, pos ¬P
pos P pos ¬P pos P, pos ¬P
pos P pos P pos P
unk P pos P pos P
unk P pos ¬P pos ¬P_ ___

Note that P +
seq

Q is not symmetric.

Intuitively, the parallel addition rule embodies the notion of
joining results of two independent execution paths into one
result.

• Only what is known (unknown) to be true or false in both
parts is known (unknown) to be true or false in a parallel join
of the two parts.

• What is known in only one part becomes possible in the
result.

P1 +
par

P2 is symmetric and is defined as follows

_ __
P1 P2 Result_ ___ __

kno P (¬P) kno P (¬P) kno P (¬P)
kno P (¬P) unk P (¬P) pos P (¬P)
kno P (¬P) pos P (¬P) pos P (¬P)
kno P kno ¬P pos P, pos ¬P
kno P pos ¬P pos P, pos ¬P
unk P, (¬P) unk P, (¬P) unk P (¬P)
unk P (¬P) pos P (¬P) pos P (¬P)
pos P pos ¬P pos P, pos ¬P_ __

Intuitively, the consistent addition rule embodies the notion of
adding the consistent portion of one set to that of another. Note
that this operation is not symmetric.

• P1 +
con

P2 is defined as

{ p1 ... pk ∈ P1 p1 ... pk are consistent with P2 } ∪ P2

that is, the result of +
con

is P2 plus those propositions in P1
that are consistent9 with P2.

On the basis of consistent addition, we introduce a derived rule
that intuitively provides the elements in one result that are
inconsistent with those of the other.

• P1 −
con

P2 is defined as

P1 − (P1 +
con

P2)

that is, the result of −
con

are those propositions in P1 that are
inconsistent with P2.

5. Propagation in Inscape

The basis for propagation in Inscape is the instantiation of the
interface specification of an operation by the simultaneous
substitution of the arguments for the formal parameters in that
specification. This instantiation is performed by the
environment for function and procedure invocations.

The global invariant for the propagation of predicates is as
follows:

every precondition and obligation is either satisfied within
the implementation component or propagated to the
interface of that component.

The occurrence of preconditions or obligations that are not
satisfied and have not been propagated to the interface indicate
that the implementation has discernable errors.

In the subsequent discussion, we use the inference rules defined
for SL, PL, and the standard set theory operations, ∪, ∩, ⊂, ⊆,
=, and −. I first introduce a number of sets that are basic in
reasoning about sequences, discuss the rules of propagation from
one sequent to the next, and define how the interface of a
sequence is synthesized from the sequence of sequents. I next
define how the interface of an operation is synthesized from its
implementation sequence. Given the basis of the sequence, I
then show how Inscape constructs the interface for selection (IF)
and iteration (WHILE and REPEAT) as functions of their
component parts.

_ ____________________

9. While the notion of consistency is part of SL and not PL, I note here that the
distinction between ‘‘possible’’ or ‘‘known’’ is not part of SL but PL. As such,
all possible predicates are treated as known in determining consistency. Thus,
if it is the case that P is in P1 and possibly ¬P is in P2, the P will not be in the
result of P1 +

con
P2.

5.1 Sequences

The sequence is the basic construction unit in building software.
It is in the context of sequence that I want to treat each sequent
(that is, each operation invocation, if statement, etc.) as an
independent, indivisible unit. It is in this context that the basic
notions of precondition and obligation satisfaction, propagation
and logical barriers are defined. It is in this context that the
accumulation of the current state of the computation is also
defined.

• The following sets are used for reasoning about each Sequent
S

i
in the Sequence S = S

1
.. S

n

Pre
i

the set of preconditions for sequent
i

Post
i

the set of postconditions for sequent
i

Obl
i

the set of obligations for sequent
i

PreCeil
i

the preconditions ceilinged by sequent
i

(that is,
sequent

i
forms a precondition barrier)

OblFloor
i

the obligations floored by sequent
i

(that is,
sequent

i
forms an obligation barrier)

State
i

the current state after sequent
i

Promised
i

the set of obligations outstanding after sequent
i

Needed
i

the accumulated set of unsatisfied preconditions
up to and including sequent

i
(from sequent

n
—

remember, preconditions ‘‘float up’’)

SatPre
i

the satisfied preconditions for sequent
i

UnsatPre
i

the unsatisfied preconditions for sequent
i

SatObl
i

the satisfied obligations for sequent
i

• For the Sequence S there is an initial State
0

and Promised
0

• For each Sequent S
i
in Sequence S = S

1
.. S

n

State
i

= State
i-1

+
seq

Post
i

SatPre
i

= { P ∈ Pre
i
 P is known in State

i-1
}

UnsatPre
i

= Pre
i
− SatPre

i

Needed
i

= (Needed
i+1

− PreCeil
i
) ∪ UnsatPre

i

PreCeil
i

= (Needed
i+1

−
con

Post
i
) ∪ (Needed

i+1
−

con
Pre

i
)

SatObl
i

= { O ∈ Promised
i
 O is known in State

i
}

Promised
i

= ((Promised
i-1

− OblFloor
i
) ∪ Obl

i
) − SatObl

i

OblFloor
i

= Promised
i-1

−
con

Obl
i

The current state is the result of sequentially adding the current
postconditions to the previous state. The satisfied preconditions
are those that are known (according to SL) in the preceding
sequent’s resulting state. The currently needed preconditions are
those subsequently needed, less any preconditions that have been
ceilinged by the current postconditions or preconditions, together
with those preconditions that have not been satisfied by the
previous state. The satisfied obligations are those previously
unsatisfied obligations that have accumulated from the preceding
and current sequents that are known in the current sequent’s
resulting state. Notice that the accumulated obligations do not
include those obligations that have been previously or currently
floored.

Precondition ceilings and obligation floors are particularly
important because they represent preconditions and obligations
that have failed to satisfy the global invariant state above: they
have not been satisfied and have not been propagated to the

interface. They represent detected interface-use errors in the
implementation.

P

Q

V

Q ¬P

R

¬R

S ¬R

¬R

Needed = {P, S}

Promised = {V}

State = {Q}

PreCeil = {¬P}

Needed = {¬P, S}

SatPre = {Q}

Promised = {V, ¬R}

State = {Q, R}

PreCeil = {¬R}

Needed = {S, ¬R}

State = {Q ¬R}

SatObl = {¬R}

Promised = {V}

Example 1: A Sequence

Consider Example 1 showing a sequence of three sequents10.
The set State represents the sequential state of the computation,
accumulating a consistent set of postconditions. The set Needed
represents the accumulation of preconditions that have not been
satisfied. The set Promised contains those obligations that have
not yet been satisfied. Notice that there are two cases where a
precondition has not been satisfied and cannot be propagated to
the interface. These cases are exemplified by the non-empty
PreCeil sets (as, as such, indicate errors in the implementation of
the sequence).

The rules of synthesizing the interface for a sequence are as
follows:

• Let the Sequence S = S
1

.. S
n

where State
0

and Promised
0

have been initialized according to the context of the

_ ____________________

10. In this example, the pictorial syntax is a follows: preconditions appear at the
top center of each box, obligations at the right center of each box (if there are
any), and postconditions appear at the bottom center of each box.

sequence.

• The interface for S is propagated as follows:

S.Pre = Needed
1

S.Post = State
n

S.Obl = Promised
n

• The contents of S.PreCeil and S.OblFloor may be amended
according to the context of the use of the sequence S.

According to these rules, the interface for the sequence in the
preceding example is:

S.Pre = {P, S}
S.Post = {Q, ¬R}
S.Obl = {V}

5.2 Operations

A function or procedure consists of a set of local declarations
and an implementation sequence. The rules are simple and
straightforward for synthesizing the operation interface from the
implementation sequence interface: remove all those predicates
that refer to local data objects.

• Let the Operation O have an implementation sequence S =
S

1
.. S

n
where S.State

0
= ∅ and S.Promised

0
= ∅

• The interface for O is propagated as follows:

O.Pre = S.Pre − { P P refers to local variables }
O.Post = S.Post − { P P refers to local variables }
O.Obl = S.Obl − { P P refers to local variables }

• The state of the sequence S is amended as follows:

S.PreCeil = S.Pre − O.Pre
S.OblFloor = S.Obl − O.Obl

Thus, any preconditions or obligations that cannot be propagated
because they refer to local objects appear in the precondition
ceilings and obligation floors of the implementation sequence. If
in the preceding example, S, Q, and V refer to local variables,
then the interface for the operation for which this sequence is the
implementation sequence would have the following interface:

O.Pre = {P}
O.Post = {¬R}
O.Obl = { }

Further, the implementation sequence would now have the
following non-empty sets:

S.PreCeil = {S}
S.OblFloor = {V}

5.3 Selection

I present the IF statement as the representative example of
selection. The CASE statement is easily generalized from the IF
statement.

• Let the Selection Statement S consist of BE = the boolean
expression, T = the then sequence, and E = the else
sequence. The boolean expression, BE, has two results (true
and false) each of which consist of a set of postconditions
and a set of obligations (BE.True.Post and BE.True.Obl, and
BE.False.Post and BE.False.obl).

• The then and else sequences, T and E, are initialized as
follows:

T.State
0

= BE.True.Post
E.State

0
= BE.False.Post

T.Promised
0

= BE.True.Obl
E.Promised

0
= BE.False.Obl

• The interface for S is propagated as follows:

S.Pre = BE.Pre ∪ (T.Pre − T.PreCeil)
∪ (E.Pre − E.PreCeil)

S.Post = T.Post +
par

E.Post
S.Obl = T.Obl ∩ E.Obl

The propagated preconditions are those which are required
independent of which path is to be traversed (less those
preconditions that are ceilinged in the then and else
sequences). The propagated postconditions are the result of
adding in parallel the results of the then and else sequences
(resulting in known and possible predicates). Only those
obligations that have been entailed in both sequences are
propagated.

• The state of the selection statement S is amended as follows:

T.OblFloor = T.Obl − S.Obl
E.OblFloor = E.Obl − S.Obl
T.PreCeil = (T.Pre −

con
BE.True.Post) ∪

(T.Pre −
con

E.Pre) ∪ (T.Pre −
con

BE.Pre)
E.PreCeil = (E.Pre −

con
BE.False.Post)∪

(E.Pre −
con

T.Pre) ∪ (E.Pre −
con

BE.Pre)

Obligation floors contain those obligations that have not been
propagated. Precondition ceilings contain those
preconditions which are inconsistent with the postconditions
and preconditions or the boolean expression, and inconsistent
with the other sequences propagated preconditions.11

Consider Example 2, which illustrates an IF statement. The
initial state of the then and else sequences are set from the true
and false results respectively. The interface for the IF statement
is generated as follows: the preconditions P and Q are the
boolean expression preconditions, while V, W, and X are the
preconditions from the then and else sequences that are
consistent with each other, with the postconditions of their
respective boolean expression results, and with the boolean
expression preconditions; the postconditions S, T, and V are
those postconditions that are known independent of which
sequence was executed, while U, ¬U, R, ¬R are those
postconditions that are known in only one of the two sequences
(and hence are only possible in the result); the obligation Y is
that obligation that is entailed independently of which sequence
was executed.

Preconditions U and ¬U are ceilinged because they conflict with
each other; ¬T is ceilinged because it conflicts with the boolean
expression postconditions T; and ¬P is ceilinged because it
conflicts with the boolean expression precondition P.

Obligations R and ¬R are floored because they do not occur in
both sequences.

5.4 Iteration

Iteration is both simpler and more complex that selection. It is
simpler because it has only one sequence as a part of it. It is

_ ____________________

11. Note that I have taken a rather stronger position on the flooring of obligations
than might be taken. One could propagate them conditionally instead.
However, ‘‘conditional propagation’’ is considerably more difficult and we
have taken the simpler approach.

Y

S, T, V, pos(U, ¬U, R, ¬R)

P, Q, V, W, X

R, Y

S, T, ¬R, ¬U, V

¬U, ¬P, ¬T, V, X

R

¬U, ¬T, ¬P

¬R, S, T

¬R, Y

R, S, T, U, V

U, ¬P, ¬T, V, W

¬R

U, ¬T, ¬P

R, S, T

R¬R

¬R, S, TR, S, T

P, QBE.Pre

BE.True.Post

BE.True.Obl

BE.False.Post

BE.False.Obl

T.State
0

E.State
0

T.PreCeil E.PreCeil

T.OblFloor E.OblFloor

T.Pre

T.Post

T.Obl

E.Pre

E.Post

E.Obl

S.Pre

S.Post

S.Obl

[Then Sequence] [Else Sequence]

Example 2: Selection Statement

more complex because that sequence loops back on itself — that
is, the results of the loop body sequence can have an effect on
the preconditions of the statement, and, worse, can cause an
error by being inconsistent with the boolean expression
preconditions. Note in the rules below that there is no notion of
invariant, nor is there any consideration of the results of the loop
body beyond the one error condition and their propagation to the
interface as ‘‘possible’’. Detecting the error of the loop body
postconditions being inconsistent with the boolean expression is
all that is needed for the following reasons: if nothing is known
in the loop body about a particular boolean expression
precondition P, then whatever postcondition outside the loop that
satisfies it will remain known throughout the loop body;
whatever is known or possible in the loop body, will either
satisfy that precondition P, or conflict with it — we only need to
worry about the conflict.

The rules for WHILE are defined as follows:

• Let the Iteration Statement W consist of BE = the boolean
expression, and B = the loop body (a sequence). The boolean
expression, BE, has two results (true and false) each of
which consist of a set of postconditions and a set of
obligations (BE.True.Post and BE.True.Obl, and
BE.False.Post and BE.False.obl).

• The loop body, B, is initialized as follows:

B.State
0

= BE.True.Post
B.Promised

0
= BE.True.Obl

• The interface for W is propagated as follows:

W.Pre = BE.Pre ∪ (B.Pre − B.PreCeil)
W.Post = (B.Post +

par
∅) +

seq
BE.False.Post

W.Obl = BE.False.Obl

Note that the loop body postconditions are changed from
known to possible (since indeed it is possible to skip the
body entirely if the boolean expression is false) by applying
the parallel addition to the postconditions and the empty set.

• The state of the loop body sequence B is amended as
follows:

B.OblFloor = B.Obl
B.PreCeil = (B.Pre −

con
BE.True.Post) ∪

(B.Pre −
con

BE.Pre) ∪ (B.Pre −
con

B.Post)

Note that we prevent any loop body precondition from being
propagated to the loop body interface if it conflicts with the
propagated postconditions.

• There is an Error when W.Pre −
con

B.Post ≠ ∅

The REPEAT12 statement differs slightly from the WHILE in
that the results of the loop body are known, not just possible.
Similarly, the obligations are treated as if the loop body were in
the sequence just prior to the boolean expression (which it in fact
is).

• Let the Iteration Statement R consist of BE = the boolean
expression, and B = the loop body (a sequence) where

B.State
0

= BE.False.Post
B.Promised

0
= BE.False.Obl

• The interface for R is propagated as follows:

R.Pre = BE.Pre ∪ (B.Pre − B.PreCeil)
R.Post = B.Post +

seq
BE.True.Post

R.Obl = B.Obl +
seq

BE.True.Obl

• The state of the loop body sequence B is amended as
follows:

B.OblFloor = B.Obl − R.Obl
B.PreCeil = (B.Pre −

con
BE.False.Post) ∪

(B.Pre −
con

BE.Pre) ∪ (B.Pre −
con

B.Post)

• There is an Error when R.Pre −
con

B.Post ≠ ∅

Consider Example 3, which illustrates the WHILE statement.
The initial state of the loop body sequence is set from the true
results thus yielding the initial state of {R, S} and the initial
promised of {V}. The interface of the WHILE is generated as
follows: the preconditions P and Q are the boolean expression
preconditions, while O is the precondition from the body
sequence that is consistent with the boolean expression true
results and the boolean expression preconditions; the obligation
W is that of the boolean expression false result; the
postconditions T and U are those of the false result, while X is a
possible postcondition from the body sequence interface. Notice
that ¬Q produces an error: it conflicts with with the boolean
expression precondition Q.

Precondition ¬Q is ceilinged because it conflicts with the
boolean expression precondition Q; and ¬R is ceilinged because
it is inconsistent with the true result postcondition R.

Obligations W and Z are floored because the loop body sequence
may not be executed.

6. Completeness and Correctness

As mentioned earlier, the basic rule in Inscape is that every
precondition and obligation must be either satisfied within an
implementation or propagated to its interface. I have shown
examples (in the operation, if and while interfaces) where this
does not happen — where there exist precondition ceilings and

_ ____________________

12. Remember that the form of the REPEAT statement is ‘‘repeat <loop-body>
until <boolean-expression>’’. The loop body is executed at one or more times
until the boolean expression is becomes true.

W

T, U, pos(X, ¬Q)

O, P, Q

W, Z

X, ¬Q

¬Q, ¬R, S, O

W, Z

¬Q, ¬R

R, S

VW

R, ST, U

P, QBE.Pre

BE.True.Post

BE.True.Obl

BE.False.Post

BE.False.Obl

B.State

B.PreCeil

B.OblFloor

B.Pre

B.Post

B.Obl

W.Pre

W.Post

W.Obl

[Body Sequence]

Example 3: Iteration Statement

obligation floors. Precondition ceilings and obligation floors
contain unsatisfied predicates and, as such, indicate that there are
errors. The notion of implementation completeness is defined to
determine this kind of problem — an implementation is
complete if there do not exist any detected13 errors.

An implementation I = sequence S = S
1

.. S
n

for an operation
O is complete if and only if

• Every precondition in S has either been satisfied or is in
the interface of O — that is, all precondition ceilings in S
(recursively) are empty

• Every obligation in S has either been satisfied or is in the
interface of O — that is, all obligation floors in S
(recursively) are empty.

• There are no iteration errors — that is, I.Pre −
con

B.Post =
∅ for all iterations.

Inscape provides a slight variation of the notion of correctness of
an implementation. In addition to the standard notion of
correctness with respect to a specified interface, I require that the
implementation be complete as well.

A propagated interface PI for operation O is correct with
respect to the specified interface SI for operation O if and
only if

• the implementation I for operation O is complete

• the interfaces PI and SI are identical

* PI.Pre = SI.Pre
* PI.Post = SI.Post
* PI.Obl = SI.Obl

Note: Redefinition of the propagated interface may be
needed to cast it in terms of the specified interface.

_ ____________________

13. Please note that I do not claim that no errors exists when an implementation is
complete, only that there are none that I am able to detect.

The completeness requirement is not strictly needed for the
definition, but it seems somewhat incongruous to have detected
errors in the implementation and still consider it correct.

7. Summary and Current State of the Project

The novelty of Inscape’s approach lies in its constructive use of
interface specifications. The formal interface specifications are
the basis for constructing (or propagating, synthesizing)
interfaces from component parts: the interface of a sequence as a
function of the constituent sequents; the interface of an operation
as a function of its local declarations and implementation
sequence; the interface of selection as a function of its boolean
expression and then and else sequences; and the interface of
iteration as a function of its boolean expression and loop body.
Moreover, Inscape uses the rules of constructing interfaces to
expose semantic errors in the use of the interfaces.

The basic mechanisms used to define sequence, selection and
iteration are used to define the formal handling of exceptions as
well. I have not presented the rules for the various formalized
ways of handling exceptions because of length considerations.
They have, however, been defined.

The work described in this paper has been implemented in the
Inscape Prototype. The rules for handling exceptions have not
yet been implemented, but are next on the list for
implementation.

My current work in the logical and analytical aspects of Inscape
is concerned with the following:

• The Propagation Logic (PL): determine its formal properties
and the proofs of the various rules (the reasoning has only
been done informally).

• Obligations: complete the work on the implications of not
having the same relationship that preconditions and
postconditions have.

• The semantics of language statements: one of the main
questions is how much can the environment do automatically
with assignment, and how much interaction will be needed
with the user;14 I think that little can be automated with
expressions and, thus, interaction will be required to
determine the interfaces of expressions (though of course the
programmer can encapsulate expressions in functions and
thus eliminate interaction where expressions occur more than
once).

• The Specification Logic (SL): determine its form and how
consistency determination can be strengthened and made
more efficient (the primary emphasis, currently, is upon
pattern matching and simple deduction).

• Evolution: how to make efficient use of the semantic
interconnections (established by the process of propagation)
and efficiently evaluate, incrementally, the effects of changes
both to interfaces and implementations.

Acknowledgements

Bill Hopkins and David Rosenblum provided careful readings
and insightful comments an earlier version of this paper.

_ ____________________

14. One of my primary strategies is to automate as much as possible and interact
where automation is not possible.

References

[1] Dewayne E. Perry. ‘‘The Inscape Environment.’’
Proceedings of the 11th International Conference on
Software Engineering, Pittsburgh PA, May 1989. pp 2-
12.

[2] Dewayne E. Perry and Gail E. Kaiser. ‘‘Models of
Software Development Environments.’’ Proceedings of
the 10th International Conference on Software
Engineering, Raffles City, Singapore, April 1988. pp 60-
68.

[3] Dewayne E. Perry. ‘‘Industrial Strength Software
Development Environments’’, Proceedings of the IFIPS
’89 World Computer Conference San Francisco CA,
August, 1989.

[4] Frederick P. Brooks, Jr. ‘‘No Silver Bullet: Essence and
Accidents of Software Engineering’’, Computer, 20:4
(April 1987), pages 10-20.

[5] Dewayne E. Perry. ‘‘Software Interconnection Models.’’
Proceedings of the 9th International Conference on
Software Engineering, Monterey CA, March 1987. pp
61-69.

[6] C. A. R. Hoare. ‘‘An Axiomatic Approach to Computer
Programming.’’ CACM 12:10 (October 1969). pp 576-
580, 583.

[7] C. A. R. Hoare. ‘‘Programs are Predicates.’’ In
Mathematical Logic and Programming Languages.
Prentice-Hall, 1985.

[8] J. B. Goodenough. ‘‘Exception Handling: Issues and a
Proposed Notation’’, Communications of the ACM, 18:12
(1975). pp 683-696.

[9] David Luckham and Friedrich W. von Henke. ‘‘An
Overview of Anna, A Specification Language for Ada.’’
IEEE Software, 2:2 (March 1985). pp 24-33.

