
1

Introduction to the
Special Issue on Software Architecture

David Garlan and Dewayne Perry

I. What is software architecture?

A critical aspect of the design for any large software sys-
tem is its gross structure represented as a high-level organi-
zation of computational elements and interactions between
those elements. Broadly speaking, this is the software ar-
chitectural level of design [1], [2]. The structure of software
has long been recognized as an important issue of concern
(e.g., [3], [4]). However, recently software architecture has
begun to emerge as an explicit �eld of study for software
engineering practitioners and researchers. Evidence of this
trend is apparent in a large body of recent work in ar-
eas such as module interface languages, domain speci�c
architectures, architectural description languages, design
patterns and handbooks, formal underpinnings for archi-
tectural design, and architectural design environments.

What exactly do we mean by the term \software archi-
tecture?" As one might expect of a �eld that has only
recently emerged as an explicit focus for research and de-
velopment, there is currently no universally-accepted def-
inition. Moreover, if we look at the common uses of the
term \architecture" in software, we �nd that it is used in
quite di�erent ways, often making it di�cult to understand
what aspect is being addressed. Among the various uses
are (a) the architecture of a particular system, as in \the
architecture of this system consists of the following compo-
nents," (b) an architectural style, as in \this system adopts
a client-server architecture," and (c) the general study of
architecture, as in \the papers in this journal are about
architecture."

Within software engineering, most uses of the term \soft-
ware architecture" focus on the �rst of these interpreta-
tions. Typical of these is the following de�nition (which
was developed in a a software architecture discussion group
at the SEI in 1994).

The structure of the components of a pro-
gram/system, their interrelationships, and prin-
ciples and guidelines governing their design and
evolution over time.

As de�nitions go, this is not a bad starting point. But
de�nitions such as this tell only a small part of the story.
More important than such explicit de�nitions, is the locus
of e�ort in research and development that implicitly has
come to de�ne the �eld of software architecture.

To clarify the nature of this e�ort it is helpful to observe
that the recent emergence of interest in software architec-
ture has been prompted by two distinct trends. The �rst
is the recognition that over the years designers have begun
to develop a shared repertoire of methods, techniques, pat-
terns and idioms for structuring complex software systems.

For example, the box and line diagrams and explanatory
prose that typically accompany a high-level system descrip-
tion often refer to such organizations as a \pipeline," a
\blackboard-oriented design," or a \client-server system."
Although these terms are rarely assigned precise de�ni-
tions, they permit designers to describe complex systems
using abstractions that make the overall system intelligi-
ble. Moreover, they provide signi�cant semantic content
that informs others about the kinds of properties that the
system will have: the expected paths of evolution, its over-
all computational paradigm, and its relationship to similar
systems.

The second trend is the concern with exploiting speci�c
domains to provide reusable frameworks for product fam-
ilies. Such exploitation is based on the idea that common
aspects of a collection of related systems can be extracted
so that each new system can be built at relatively low cost
by \instantiating" the shared design. Familiar examples
include the standard decomposition of a compiler (which
permits undergraduates to construct a new compiler in a
semester), standardized communication protocols (which
allow vendors to interoperate by providing services at dif-
ferent layers of abstraction), fourth-generation languages
(which exploit the common patterns of business informa-
tion processing), and user interface toolkits and frame-
works (which provide both a reusable framework for de-
veloping interfaces and sets of reusable components, such
as menus, and dialogue boxes).
Generalizing from these trends, it is possible to identify

four salient distinctions:

� Focus of Concern: The �rst distinction is between
traditional concerns about design of algorithms and
data structures, on the one hand, and architectural
concerns about the organization of a large system, on
the other. The former has been the traditional focus of
much of computer science, while the latter is emerging
as a signi�cant and di�erent design level that requires
its own notations, theories, and tools. In particular,
software architectural design is concerned less with the
algorithms and data structures used within modules
than with issues such as gross organization and global
control structure; protocols for communication, syn-
chronization, and data access; assignment of function-
ality to design elements; physical distribution; com-
position of design elements; scaling and performance;
and selection among design alternatives.

� Nature of Representation: The second distinc-
tion is between system description based on de�nition-
use structure and architectural description based on
graphs of interacting components [5]. The former



2

Requirements

Implementations

MethodsAny way
that works

Software Architecture

Implementations

Requirements

Figure 1a Figure 1b Figure 1c

Implementations

Requirements

Fig. 1. Design Methods versus Software Architecture

modularizes a system in terms of source code, usually
making explicit the dependencies between use sites of
the code and corresponding de�nition sites. The latter
modularizes a system as a graph, or con�guration, of
\components" and \connectors." Components de�ne
the application-level computations and data stores of
a system. Examples include clients, servers, �lters,
databases, and objects. Connectors de�ne the inter-
actions between those components. These interactions
can be as simple as procedure calls, pipes, and event
broadcast, or much more complex, including client-
server protocols, database accessing protocols, etc.

� Instance versus Style: The third distinction is be-
tween architectural instance and architectural style.
An architectural instance refers to the architecture of
a speci�c system. Box and line diagrams that accom-
pany system documentation describe architectural in-
stances, since they apply to individual systems. An
architectural style, however, de�nes constraints on the
form and structure of a family of architectural in-
stances [2], [6]. For example, a \pipe and �lter" ar-
chitectural style might de�ne the family of system
architectures that are constructed as a graph of in-
cremental stream transformers. Architectural styles
prescribe such things as a vocabulary of components
and connectors (for example, �lters and pipes), topo-
logical constraints (for example, the graph must be
acyclic), and semantic constraints (for example, �lters
cannot share state). Styles range from abstract archi-
tectural patterns and idioms (such as \client-server" or
\layered" organizations), to concrete \reference archi-
tectures" (such as the ISO OSI communication model
or the traditional linear decomposition of a compiler).

� Design Methods versus Architectures: A fourth
distinction is between software design methods|such
as object-oriented design, structured analysis, and
JSD|and software architecture. Although both de-
sign methods and architectures are concerned with
the problem of bridging the gap between requirements
and implementations, there is a signi�cant di�erence

in their scopes of concern. Figure 1 illustrates this
di�erence. Without either software design methods
or a discipline of software architecture design, the im-
plementor is typically left to develop a solution using
whatever ad hoc techniques may be at hand (Figure
1a). Design methods improve the situation by provid-
ing a path between some class of system requirements
and some class of system implementations (Figure 1b).
Ideally, a design method de�nes each of the steps that
take a system designer from the requirements to a solu-
tion. The extent to which such methods are successful
often depends on their ability to exploit constraints
on the class of problems they address and the class
of solutions they provide. One of the ways they do
this is to focus on certain styles of architectural de-
sign. For example, object-oriented methods usually
lead to systems formed out of objects, while others
may lead more naturally to systems with an emphasis
on dataow. In contrast, the �eld of software archi-
tecture is concerned with the space of architectural
designs (Figure 1c). Within this space object-oriented
and dataow structures are but two of the many pos-
sibilities. Architecture is concerned with the trade-
o�s between the choices in this space|the properties
of di�erent architectural designs and their ability to
solve certain kinds of problems. Thus design meth-
ods and architectures complement each other: behind
most design methods are preferred architectural styles,
and di�erent architectural styles can lead to new de-
sign methods that exploit them.

II. Why is Software Architecture Important?

Architectural design of large systems has always played
a signi�cant role in determining the success of a system:
choosing an inappropriate architecture can have a disas-
trous e�ect. The current recognition of the importance
of software architecture would appear to signal the emer-
gence of a more disciplined basis for architectural design
that has the potential to signi�cantly improve our ability
to construct e�ective software systems.



3

Speci�cally, a principled use of software architecture can
have a positive impact on at least �ve aspects of software
development.

1. Understanding: Software architecture simpli�es
our ability to comprehend large systems by present-
ing them at a level of abstraction at which a system's
high-level design can be understood [1], [2]. More-
over, at its best, architectural description exposes the
high-level constraints on system design, as well as the
rationale for making speci�c architectural choices.

2. Reuse: Architectural descriptions support reuse at
multiple levels. Current work on reuse generally fo-
cuses on component libraries. Architectural design
supports, in addition, both reuse of large components
and also frameworks into which components can be
integrated. Existing work on domain-speci�c soft-
ware architectures, reference frameworks, and design
patterns have already begun to provide evidence for
this [7], [8].

3. Evolution: Software architecture can expose the di-
mensions along which a system is expected to evolve.
By making explicit the \load-bearing walls" of a sys-
tem, system maintainers can better understand the
rami�cations of changes, and thereby more accurately
estimate costs of modi�cations [2]. Moreover, architec-
tural descriptions can separate concerns of the func-
tionality of a component from the ways in which that
component is connected to (interacts with) other com-
ponents. This allows one to change the connection
mechanism to handle evolving concerns about perfor-
mance, interoperability, prototyping, and reuse.

4. Analysis: Architectural descriptions provide new
opportunities for analysis, including high-level forms
of system consistency checking [9], conformance to
an architectural style [6], conformance to quality at-
tributes [10], and domain-speci�c analyses for archi-
tectures that conform to speci�c styles [11].

5. Management: There is a strong rationale for mak-
ing the achievement of a viable software architecture
a key milestone in an industrial software development
process. Achieving this milestone involves specify-
ing a software system's initial operational capabil-
ity requirements, its the dimensions of anticipated
growth, the software architecture, and a rationale,
which demonstrates that the architecture, if imple-
mented, would satisfy the system's initial requirements
and anticipated directions of growth. If one proceeds
to develop a software product without satisfying these
conditions, there is signi�cant risk that the system
will be either inadequate or unable to accommodate
change.

The importance of software architecture can also be seen
in terms of its broad impact on market drivers that are
important for software-intensive businesses. These drivers
a�ect the way businesses plan their software projects and,
ultimately, the way they build their software systems.

Given that software has become an integral part of a wide
variety of products, and that many of these products have

been on the market for some time, there is a broad base of
existing software. This base represents a signi�cant invest-
ment of capital, and as such should be considered as capital
assets. The ability to use these assets is of important to
the �nancial health of software producers. Software archi-
tecture, to the extent that it focuses on domain-speci�c
abstractions and the use of various granularities of existing
architectural elements, supports the exploitation of these
assets.

Interoperability is another market driver that contribute
to the successful exploitation of a company's software as-
sets, since it promotes sharing across product lines. Soft-
ware architecture, to the extent that it is an e�ective means
of establishing a common architectural framework across
various domain-related products, represents a signi�cant
means for achieving interoperability.

As the research and development costs of software in-
crease, there is increasing market pressure to procure,
rather than produce, signi�cant portions of software sys-
tems, either by third party production or by the purchase
of software commodities. The result of this shift to con-
suming rather than producing software places an increased
importance on the resulting integration of the developed
and purchased components. Software architecture, to the
extent that it provides accessible codi�cation of design ele-
ments and their correct use in the context of speci�c archi-
tectural styles, can be critically important in assuring that
these various components are integrated e�ectively.

An important software development driving factor is that
of \interval reduction." In many segments of software-
dependent businesses, market forces call for reduced costs
and release cycles. If a company can maintain cost and
quality levels while reducing production cycles, it can
achieve signi�cant overall reductions in costs, while at the
same time improving time-to-market. Software architec-
ture, to the extent that it is able to reduce production
time by using existing assets, exploit common architectural
frameworks, and establish more e�ective integration and
generation mechanisms, may be able to achieve these time
reductions.

III. The State of the Practice

Much of architectural description in practice is largely in-
formal: drawings in which boxes represent processing com-
ponents, and arrows represent interactions among those
components. At best, these pictures present high-level
overviews of the software identifying major design compo-
nents and data/control ows, but they usually provide little
insight into the role that the data plays in the computation
or the details of the interactions between the components.

However, the growing recognition of the importance of
software architecture is leading to much more explicit use
of architectural design as currently manifested in the fol-
lowing approaches:

� standardized components
� product families
� platforms
� domain-speci�c architectures



4

Product Line
Analyst

Component
Producer

Component

Assembler

Product Line Manager

Researcher

produces,
verifies

Product Line

Strategy
Structure &

identity

collab or

Certification
enters

items into

Brokerage

Library

Broker

provides
brokerage
feedback

Software

Principles
Architecture Products

Software

for Users

Product Line
Components,
Specifications,
Verifn Info

queries/
supplies

receives feedback
from other

*

participants

collab collab

produces produces

used in used in

incentivizessponsorssponsors incentivizes

produces

submitted to

operates

* * * *

*

*

Fig. 2. Boehm-Scherlis Megaprogramming Enterprise Model

The use of standardized components arises where soft-
ware producers recognize that there is a common set of
components that are used across a set of products. An
example of this is BaseWorx [12], a set of standard com-
ponents that forms the basis for a set of related operations
support systems. Speci�c systems are produced by adding
the specialized components to the standard ones.

Product families are one means of capitalizing product
assets and using that asset base to create a family of closely
related product architectures. While the instances of a
product family all tend to be in the same domain, it is the
sharing of components amongst those instances and the
generation of those instances that is the driving force in
product family architecture.

One approach that is gaining in popularity among many
software producers is that of a software platform. A plat-
form is a general set of components that form the basis of
a variety of related products. These components are usu-
ally generic capabilities, such as databases, graphical user
interface generators, etc. The components provide means
of specialization by either special declarative languages or
special-purpose scripting languages. A platform is similar
to a set of standardized components, but it is populated
with large-granularity components that need to be tailored
for the speci�c software system.

Finally, there is a movement towards domain-speci�c
architectures [8]. Most software intensive businesses have
domain-speci�c systems that are vital to their �nancial
pro�tability. By concentrating on those domains and cre-
ating architectural abstractions that are speci�c to their

domain, these companies can combine the best aspects of
standard platforms and standardized components to create
and specialize their domain-related product families. The
platforms are tailored to their domains and the standard
components are built to provide both the domain-speci�c
processing and structures, and the necessary glue to weld
the many di�erent architectural elements together.

A good example of this approach is the oscilloscope
architecture developed at Tektronix, Inc. Product engi-
neers in collaboration with researchers developed a reusable

product architecture that provided a customizable frame-
work for instrumentation systems, based on a specialized
dataow model [1], [13]. Other more recent examples in-
clude a number of DoD-sponsored projects in domains such
as avionics, command and control, and mobile robotics.

This trend towards reuse of architecture-based, product-
line assets is leading to new roles, artifacts and relation-
ships in software development organizations. An example
of a new organizational model based on architectural reuse
is provided by Boehm and Scherlis in their \Megaprogram-
ming Enterprise Model." As illustrated in Figure 2, some
of new roles introduced in the model include

� product line managers, who oversee the human,
�nancial, and software resources needed for success-
ful development and exploitation of software product
lines;

� product line analysts, who are concerned with do-
main analysis, and engineering and evolution of soft-
ware product line architectures;

� component producers, who develop, test, cus-



5

tomize, and adapt components;
� component assemblers, who identify, assess, and
compose components to produce software systems;
and

� \brokers", who manage and help populate a library
of components and architectures.

IV. The State of Research

While the application of good architectural design is
becoming increasingly important to software engineering
practice, the fact remains that much of common practice
leads to architectural designs that are informal, ad hoc, un-
analyzable, unmaintainable, and handcrafted. This has the
consequences that architectural designs are only vaguely
understood by developers; that architectural choices are
based more on default than solid engineering principles;
that architectural designs cannot be analyzed for consis-
tency or completeness; that architectures are not enforced
as a system evolves; and that there are virtually no tools
to help the architectural designers with their tasks.

Current research in software architecture is attempting
to address all of these issues. Among the more active areas
are:

1. Architecture Description Languages: This area
addresses the need to �nd expressive notations for
representing architectural designs and architectural
styles. In particular, much of the focus of this research
is on providing precise descriptions of the \glue" for
combining components into larger systems.

2. Formal Underpinnings of Software Architec-

ture: This area addresses the current imprecision of
architectural description by providing formal models
of architectures, mathematical foundations for modu-
larization and system composition, formal characteri-
zations of extra-functional properties (such as perfor-
mance, maintainability, etc.), and theories of architec-
tural connection.

3. Architectural Analysis Techniques: Researchers
in this area are developing new techniques for deter-
mining and predicting properties of architectures. In
particular, progress is being made to understand the
relationships between architectural constraints and the
ability to perform specialized analyses, as well as ab-
straction techniques that make analysis practical for
large systems.

4. Architectural Development Methods: As archi-
tectural design becomes better understood, it becomes
imperative to �nd ways to integrate architectural ac-
tivities smoothly into the broader methods and pro-
cesses of software development.

5. Architecture Recovery and Re-Engineering:

The ability to handle legacy code is critical for large
systems with long lifetimes. Research is beginning
to address extraction of architectural design from ex-
isting systems, uni�cation of related architectural de-
signs, abstraction, generalization, and instantiation of
domain-speci�c components and frameworks. In ad-
dition, there is increasing research activity address-

ing issues of interoperability: techniques for detecting
component mismatch and bridging those mismatches.

6. Architectural Codi�cation and Guidance:

While expertise in architectural design is currently the
province of virtuoso designers, there is on-going work
on codifying this expertise so that others can use it.
This has led to an interest in rules and techniques for
selection of architectural styles, handbooks of patterns
and elements, and curricula for educating software ar-
chitects.

7. Tools and Environments for Architectural De-

sign: Given notations and models for characteriz-
ing software architectures, it becomes possible to sup-
port architectural design with new tools and environ-
ments. Current work is addressing architectural anal-
ysis tools, architectural design environments, and ap-
plication generators.

8. Case Studies: Finally, we are beginning to see the
emergence of good published case studies of architec-
tural design including retrospective analyses of suc-
cessful (and sometimes unsuccessful) architectural de-
velopment. These serve both to increase our under-
standing of what it takes to carry out architectural
design, as well as providing model problems against
which other researchers can gauge the e�ectiveness of
their techniques and tools.

V. This Issue

In this special issue on software architecture we are
pleased to present seven papers that illustrate many of
these emerging research areas.

The �rst paper, \Architectural Tradeo�s for a Meaning-
Preserving Program Restructuring Tool," by WilliamGris-
wold and David Notkin, presents a case study of the archi-
tectural design of a tool for program analysis and trans-
formation. It nicely illustrates how an architectural view
of a system helps clarify system issues, and highlights the
challenges of combining multiple architectural paradigms
in a single design.

The second paper, \A Domain-Speci�c Software Ar-
chitecture for Adaptive Intelligent Systems," by Barbara
Hayes-Roth, Karl Peger, Phillippe Lalanda, Phillippe
Morignot, and Marko Balabanovic, describes a hierarchi-
cal domain-speci�c architecture based on a combination of
layering, data streams, and blackboards. It shows how a
common architectural framework, together with a rich set
of building blocks, can provide a powerful tool for system
construction.

The next three papers deal with architectural descrip-
tion. \A Syntactic Theory of Software Architecture," by
Thomas R. Dean and James R. Cordy, presents a notation
that focuses on the syntactic, graphical aspects of architec-
tural patterns.

\Abstractions for Software Architecture and Tools to
Support Them," by Mary Shaw, Robert DeLine, Daniel
V. Klien, Theodore L. Ross, David M. Young, and Gre-
gory Zelesnik, describes a language and set of supporting
tools for architectural description. One of the more inno-



6

vative aspects of this work is its support for the explicit
de�nition of architectural connectors.
\Speci�cation and Analysis of System Architecture Us-

ing Rapide," by David C. Luckham, Larry M. Augustin,
John J. Kenney, James Vera, Doug Bryan, and Walter
Mann, also de�nes an architectural description language.
In this language, interactions between components can be
characterized in terms of event patterns. These can fur-
ther be used to analyze a running system for conformance
to more global rules about legal event interleavings.
The �nal two papers are concerned with formal ap-

proaches to architectural modelling. \A Formal Approach
to Correct Re�nement of Software Architectures," by R.A.
Riemenschneider, Mark Moriconi, and Xiaolei Qian, con-
siders the problem of architectural re�nement. The au-
thors argue that re�nement should preserve certain struc-
tural and semantic properties, and show how this notion
leads to the use of conservative extension as a re�nement
criterion.
\Formal Speci�cation and Analysis of Software Archi-

tecture Using the Chemical Abstract Machine Model," by
Paola Inverardi and Alexander L. Wolf, explores ways to
characterize architectures as reactive models inspired by
recent formal work on the Chemical Abstract Machine.

Acknowledgements

We would like to thankBarry Boehm, Paul Clements, RobertMon-
roe, Mary Shaw, and Jeannette Wing for their insightful comments
on earlier drafts of this guest introduction.

References

[1] D. Garlan and M. Shaw, \An introduction to software archi-
tecture," in Advances in Software Engineering and Knowledge
Engineering, Volume I, World Scienti�c Publishing Company,
1993.

[2] D. E. Perry and A. L. Wolf, \Foundations for the study of
software architecture," ACM SIGSOFT Software Engineering
Notes, vol. 17, no. 4, 1992.

[3] E. W. Dijkstra, \The structure of the \THE"-multiprogramming
system," Communications of the ACM, vol. 11, no. 5, pp. 341{
346, 1968.

[4] D. L. Parnas, P. C. Clements, and D. M. Weiss, \The modular
structure of complex systems," IEEE Transactions on Software
Engineering, vol. SE-11, pp. 259{266, March 1985.

[5] R. Allen and D. Garlan, \Beyond de�nition/use: Architectural
interconnection," in Proceedings of the ACM Interface De�ni-
tion Language Workshop, vol. 29(8), SIGPLAN Notices, August
1994.

[6] G. Abowd, R. Allen, and D. Garlan, \Using style to give mean-
ing to software architecture," in Proc. of SIGSOFT'93: Foun-
dations of Software Engineering, Software Engineering Notes
18(5), pp. 9{20, December 1993.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Design. Addison-
Wesley, 1994.

[8] E. Mettala and M. H. Graham, \The domain-speci�c software
architecture program," Tech. Rep. CMU/SEI-92-SR-9, CMU
Software Engineering Institute, June 1992.

[9] R. Allen and D. Garlan, \Formalizing architectural connection,"
in Proc. of ICSE'16, May 1994.

[10] P. Clements, L. Bass, R. Kazman, and G. Abowd, \Predicting
software quality by architecture-level evaluation," in To appear
in Proceedings of the Fifth International Conference on Software
Quality, (Austin, Texas), October 1995.

[11] D. Garlan, R. Allen, and J. Ockerbloom, \Exploiting style
in architectural design environments," in Proceedings of SIG-
SOFT'94: Foundations of Software Engineering, ACM Press,
December 1994.

[12] R. P. Beck et al., \Architectures for large-scale reuse," AT&T
Technical Journal, vol. 71, pp. 34{45, November-December1992.

[13] D. Garlan, \The role of formal reusable frameworks," in Pro-
ceedings of the First ACM/SIGSOFT International Workshop
on Formal Methods in Software Development, (Napa, CA), 1990.

David Garlan is an Assistant Professor of
Computer Science in the School of Computer
Science at Carnegie Mellon University. His re-
search interests include software architecture,
the application of formal methods to the con-
struction of reusable designs, and software de-
velopment environments. Professor Garlan
heads the ABLE project, which focuses on the
development of languages and environments to
support the construction of software system
architectures. Before joining the CMU faculty,

Professor Garlan worked in the Computer Research Laboratory of
Tektronix, Inc., where he developed formal, architectural models of
instrumentation software.

Dewayne E. Perry is a Member of Techni-
cal Sta� in the Software and Systems Research
Center at AT&T Bell Laboratories. He spent
the �rst part of his computing career as a pro-
fessional programmer, then combined both re-
search (as a visiting research faculty member
in Computer Science at Carnegie Mellon Uni-
versity) and consulting in software architecture
and design, and has concentrated on research
in software engineering for the past 10 years.
His research interests (in the context of build-

ing and evolving large software systems) include: software architec-
ture, software process descriptions, analysis, modeling, visualization,
and environmental support; software development environments; and
the practical use of formal speci�cations and techniques,

Dr. Perry is a member of ACM and IEEE, a member of the ed-
itorial board for IEEE Transactions on Software Engineering, and
Co-Editor in Chief of Software Process: Improvement and Practice.


