
-- --

The Inscape Environment: Knowledge-Based Synthesis of

Large Systems through the Evolution of Program Interfaces

[Extended Abstract]

Dewayne E. Perry

AT&T Bell Laboratories, 3D-454

600 Mountain Ave.

Murray Hill, New Jersey 07974

(201) 582-2529

The problems of Building Large Software Systems

Our research focuses on the problems of building a software development environment within which

developers can construct and evolve large software systems. There are a number of fundamental

problems that plague large systems; we address two of them in this paper. The first is that the majority

of the life cycle is spent in evolution and maintenance, not development. [Boehm 81], page 533, states

Estimates of the magnitude of software maintenance costs range from slightly over 50% to 75% of

overall life-cycle costs. Second, as the size of systems increases, the problems of effective

communication among developers increase even more rapidly. The complexity of systems, the

interactions between pieces of the system, and the interactions between the developers grow in

proportion to the size of the system.

It is our position that "classical automatic programming" is currently not mature enough to solve the

problems inherent in producing large systems. Further, we assume that it will not become mature in the

near future. We, therefore, take a half-way position between traditional software development and fully

automatic programming in order to determine the kinds of benefits that may be derived from formal

specification and verification on the one hand and automatic programming on the other while trying to

avoid the hard problems that occur in both.

Inscape: an Interactive, Semi-Automatic Programming Environment

The Inscape Environment [Perry 86a] is centered around the constructive use of module interface

specifications (expressed in the language Instress). Instress specifications formally describe application-

specific knowledge in a declarative fashion — that is, Instress provides a means of reifying program

interfaces. As interfaces are a major factor in the correctness proofs of large systems, we want to be able

to reason about them explicitly. Further, Instress specifications are constructed by means of a

specification-knowledgeable editor that provides consistency and completeness checking in addition to

general semantic checking such as type checking.



-- --

The interactive, semi-automatic program construction process is automated by the Inform program

construction editor which is knowledgeable about the specification language, the programming language

and Inscape’s logic of program construction. The knowledge provided in the specifications is

instantiated for each specific use and additional knowledge about the software is captured as the program

is being constructed.

Some of this acquired knowledge is obtained from the management of the details of constraint

propagation [Stefik 81] — that is, Inform keeps track of constraint satisfactions so as to provide a basis

for the understanding of behavioural dependencies between pieces of the system. Constraints are

provided in several different ways: data constraints are given in the specifications as part of the

description of the properties of the types, variables, and constants; constraints on operations are

provided by preconditions and obligations (preconditions are predicates which must be satisfied before

the operation’s invocation; obligations are predicates that must be satisfied subsequent to the operation’s

execution — see [Perry 86a]); constraints on exceptional results are expressed for each operation as well

(enabling the environment to understand the nature of these conditions and how to handle them — a

much more conservative approach than automatic generation of error detection code as in RIP [Kelly

86]). These constraints must either be satisfied within the implementation or be propagated to the

interface of the piece of software being constructed.

However, because of the logic of program construction, the environment may not be able to propagate

the unsatisfied constraints to the interface. In this case, the implementation is considered to be

incomplete. To handle this problem of incompleteness, Inform maintains an agenda of unsatisfied

preconditions and obligations, selects possible techniques for satisfying them, and presents the user with

a prioritized list of these possibilities. Prioritization is based on user-supplied pragmatic information and

the number of constraints that can be satisfied by each possibility.

An important aspect of the evolution process is automated by the Infuse subsystem [Perry 86b]. The

primary goal of Infuse is to maintain the consistency of all the interfaces and their uses while a system

evolves. The construction process has guaranteed the satisfaction or propagation of the constraints

expressed in the specifications; the evolution process must eventually preserve these goals of satisfaction

or propagation. One of the tools used by Infuse in determining the effects of changes to existing

software is a truth maintenance system. Infuse combines a backtracking form of truth maintenance with

a weak form of assumption-based truth maintenance [de Kleer 86] to perform shallow searches of spaces

of possible changes.

A notion common to the various tools underlying the Inscape Environment is that of consistency. We

have identified several strengths of consistency, the different logics associated with each form of

consistency, and the relative costs of implementing those logics. At this point, we provide a relatively

weak form that yields a practical environment at the expense of allowing the possibility of errors in the

implementations. We are currently investigating the implementation of a slightly stronger form.

Summary

Inscape provides mechanisms for ameliorating two fundamental problems in the life-cycle of large

software systems: communication and evolution. First, the knowledge base acquired in the form of



-- --

application-specific knowledge (the interface specifications) and the construction of the program

(acquired in the construction and evolution process) provide a useful means of communication among

the developers in a large project. Second, the interactive, semi-automatic building and evolving of

software provide a gain in productivity over traditional methods, with the environment assuming a much

more intelligent and active part of the construction and evolution process.

References

[Boehm 81] Barry W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.

[de Kleer 86] Johan de Kleer. An Assumption-Based TMS. Artificial Intelligence, 28:2,

March 1896, pp 127-162.

[Kelly 86] Van E. Kelly and Deborah L. McGuinness. Automatic Re-Programming for

Robustness. To appear in GLOBECOM 86.

[Perry 86a] Dewayne E. Perry. The Inscape Program Construction and Evolution

Environment. Computer Technology Research Laboratory Technical Report,

AT&T Bell Laboratories, April 1986.

[Perry 86b] Dewayne E. Perry and Gail E. Kaiser. Automatically Managing and

Coordinating Sources Changes in Large Systems, Computer Technology

Research Laboratory Technical Report, AT&T Bell Laboratories, June 1986.

[Stefik 81] Mark Stefik. Planning with Constraints (MOLGEN: Part 1), Artificial

Intelligence, 16:2, 1981, pp 111-139.


