
Session 5: Key Techniques and Process Aspects for Product Line

Development

Nancy S. Staudenmayer Dewayne E. Perry

Sloan School� Software Production Research

Massachusetts Institute of Technology Bell Laboratories

Boston MA 02114 Murray Hill, NJ 07974

Elisabetta Di Nitto began the session as the keynote
speaker by posing the questions `What are the key
techniques and process aspects that we speci�cally
need to develop product lines?' and `What is a prod-
uct line/family?' She noted that for the latter we do
not get any help from ISO 9000-3, CMM, Bootstrap,
the Software Engineering Reference Book, or the IEEE
Software Engineering Standards.

The following de�nitions were o�ered to begin the
discussions:

� Product Family: a set of products o�ering the
same basic functionalities with some signi�cant
variations.

� Product Line: a set of products each of them of-
fering complementary features, and that are con-
ceived, designed, and implemented to jointly op-
erate in supporting users' activities.

With these de�nitions, Microsoft would be considered
a product line, whereas Eudora would be considered
a product family.

From various position and other papers, Di
Nitto extracted the following de�nitions of product
lines/families:

� It is a set of assets which support a family of
software products and/or processes within a given
domain [Boehm].

� A software product line (family) can be viewed as
a collection of products that are similar in some
important respect yet systematically di�erent in
others (for example, successive revisions of a sin-
gle application, versions of an application for dif-
ferent host platforms, versions with varying fea-
tures) [Sutton & Osterweil].

� A collection of software products that address
a common set of system requirements, and are

organized around a speci�c business activity
[CMU/SEI-95-SR-024].

� Programs inevitably exist in many versions (prod-
ucts). A rational design process should address
the design of all versions (product family) [Par-
nas]

The following techniques are often associated with
product line/family development:

� software reuse
� domain analysis
� software architecture
� platforms
� generation
� customization
� process reuse
� process federations and cooperation
� reverse engineering and rearchitecturing
� con�guration management

Which ones have direct e�ects on product line/family
development? Which ones can be reasonably consid-
ered orthogonal? Do product lines have di�erent re-
quirements from product families?

Di Nitto raised a number of questions to consider
in the relationship between product lines and software
architectures.

� What is the relationship among design for reuse,
software architecture development and product
line/family development?

� What is the role of domain analysis? What ac-
tivities are involve?

� What is the role of domain speci�c software ar-
chitecture with respect to product lines?

� What are the advantages of using domain spe-
ci�c languages and when can they be used suc-
cessfully?



Perry raised the issue of doing a generic architec-
ture versus doing a speci�c architecture. For exam-
ple, there were two di�erent products doing virtually
the same thing but with di�erent implementations.
Can we come up with a generic architecture that cov-
ers both products? An interesting issue in the con-
text is what to do with distribution | given that the
products may be either centralized or distributed, can
we de�ne an architecture that is distribution free and
hence applicable to the entire range of implementa-
tions? Software architecture for a product line should
involve/enable ways of developing the architectures for
di�erent products.

Balzer pointed out that we need to identify what is
di�erent between the products. Architecture is one ex-
ample of what might be di�erent. What are the other
di�erences? We move from reasoning about an in-
stance to reasoning about types of instances and thus
characterize the space of the product line. The intel-
lectual problem is the characterizing of that domain
space and how then to �ll it easily.

Is this just good engineering? This question was
raised by Alex Wolf. We identify the points of likely
changes and design and develop accordingly. How do
we distinguish between this and product line develop-
ment? Is it just a matter of knowing the points of
variability a priori? Tully continued this point by ask-
ing the question: because of the harder problems with
product lines, do we just need harder methods, or do
we need di�erent methods and processes? Perry sug-
gested that it is both harder than what we already
do, there are more drivers on the process (for ex-
ample: customer requirements, domain requirements,
business constraints, project constraints), and there
are new kinds of problems. Di Nitto, on the other

hand, agreed with Wolf: there is not much di�erence
between doing a rational process and making a prod-
uct line.

Boehm raised another issue about the critical set
of process di�erences that exists because the develop-
ment of a product line is primarily a business decision.
The greater the domain, the greater is the opportunity
for leverage, but the harder it is to develop common-
ality.

Good design at the product line level requires more
than just good engineering, according to Bandinelli,
because it involves coordination of multiple processes
(for example, various product processes plus the prod-
uct line process). the domain can be a business deci-
sion or it can be de�ned at the solution level | for
example, solving several problems with a common so-
lution. With multiple business needs we need to an-

ticipate or de�ne their commonality and synchronize
these concerns over time.

Balzer asked what di�erence does it make if you
are operating in a domain space or an instance? The
domain analysis has to do with the de�nition of the
general space you are operating in. The solution space
consists of the architectures, designs and components.
We have been thinking about product lines as if there
were new development. In practice they are de�ned
ad hoc | there is a legacy factor and you try to bring
unity to a bunch of disparate products and processes.

Di Nitto resumed her questions about product lines
and various other aspects of the development process.
Speci�cally, what is the relationship of con�guration
management to product lines/families?

� What are the requirements for
product lines/families on con�guration manage-
ment?

� Do they need to be speci�c for product
lines/families?

Con�guration management as de�ned by Tichy is
the management of di�erent versions of the same prod-
uct. Estublier claimed that it is very hard to forecast
the evolution of a product family because the necessity
of evolving and adapting to technological possibilities
and market pressures is very unpredictable. It is not
possible to forecast an architecture for a product line
lasting 40 years. Conradi pointed out that we can
design for the future, but that this involves tradeo�s
that chose between various possibilities.

Madhavji noted that in looking at 39 projects at
a consulting company they often were not able to do
a top-down approach and often needed to adapt both
the products and processes as they evolved. With re-
spect to generic architectures: one often needed to
experiment and try out several di�erent approaches
in order to decide on what level was most appropri-
ate. This was a fundamental di�erent situation that
simply producing a product.

The issue of whether there is any di�erence between
a product line and a very large, very complex product
that exists for a long time was raised again by Tully.
Hollenbach pointed out a study by Galerno that con-
sisted of a domain analysis of domain analysis tech-
niques that addressed the question of this di�erence
from good engineering.

Balzer found similarities among the 12 techniques,
but asked whether they were all good engineering?
Hollenbach also noted their similarity but that some
of these techniques only work when you have complete
knowledge of a domain. For example, Kellner noted



you need a lot of understanding before you can de�ne
and use a domain speci�c language. To understand
the implications for the associated processes you need
a very rich model of the products.

With respect to domains, Perry noted that we tend
to think of a system as addressing one domain when in
fact we have multiple domains. Moreover, we ought
to be thinking in terms of the problem domain for
our product lines, because it is primarily a business
venture. The systems we build are built in the solution
domain.

Votta asked whether the sources of variability have
di�erent implications for process? We are better at
forecasting technological needs than user needs. Der-
niame o�ered an object model in which we have struc-
tural knowledge, behavioral knowledge and genetic
knowledge to help understand the variations in the
products and processes. Kellner asked whether we
needed special capabilities because of the special char-
acteristics of product lines? The process clearly di�ers
from that for a single product. What does this imply
for capabilities?

Di Nitto summarized the discussion up to this
point.

� There is a di�erence between a software architec-
ture for a generic architecture and a product line

� Domain analysis is useful for product develop-
ment but we must know or have experience with
the domain

� We cannot forecast all changes to be made with-
out good domain knowledge

� We may start with one domain and then work
towards the unknown

Balzer proposed a spectrum from weak product
lines in which you have reuse to strong product lines
that go further than reuse. Boehm noted that some-
times technology comes along that creates solutions
that did not exist before.

As the keynoter, Di Nitto then redirected the dis-
cussion to consider the problems of product lines in
relationship to reverse engineering and rearchitectur-
ing.

� Can a product line be developed a posteriori?

� What is the relationship between product
lines/families and reverse engineering and reachi-
tecturing?

� When are reverse engineering and rearchitectur-
ing cost e�ect in product line/family develop-
ment?

� Can a re-engineered component be reused with-
out reusing the architecture from where it was
derived?

Re-engineering is fundamental to the issue of prod-
uct lines. According to Balzer, you must have an ex-
perience base to draw upon. You make business de-
cisions to leverage o� synergy. Which way you do it
(from scratch or by re-engineering or reverse engineer-
ing) is irrelevant and depends on the particulars of the
situation. But either way, product lines are experience
based.

Heineman noted that once you have made the de-
cision, you need two levels of processes: one at the
product level and one between the products.

Martinez noted that in her experience at Motorola
they did not so much plan a product line as needed
to merge and disentangle existing products. Motorola
spends about 10% of resources on constant restructur-
ing. Osterweil claimed that it is a set of consistency
constraints (that relate the artifacts together) that is
the basis for the constant shaping of the experience
base. We need to operationalize and make explicit
these relationships (which now is implicit in peoples
heads).

Estublier claimed that it is almost all a posteriori.
We re-architect and redesign as a key part of product
improvement. Di Nitto pointed out that this time and
e�ort for a generic and 
exible architecture is often at
odds with the need to get a product out in a timely
manner. Boehm noted the importance of shared as-
sumptions, particularly with respect to interfaces.

The keynote questions then continued concerning
product lines and generation and product lines and
software reuse.

� How can generation be used to support the devel-
opment of product lines/families?

� Is reuse of existing components useful in product
line/family development?

� Is it speci�c to this kind of development or is it
an orthogonal issue?

� What is a software asset?

� When can a software asset be reused across a
product line?

� To what extent does the granularity of software
assets in
uence the product line development pro-
cess?

� how should we use design for reuse techniques in
product line development?



� What is the relationship between customization
and product line/family development?

� Is customization related with reuse?

Martinez provided an overview of software develop-
ment with reuse as practiced at Motorola illustrating
both the development cycle and the management cy-
cle.

� Mkt reqs; System reqs; System specs ;Dev*
; Test* ; Deploy

� Product line/product release planning; Project
mgmt; Field mgmt

Elements with an * indicate where some teams own
common software and other teams own speci�c soft-
ware.

Wolf asked if the people who owned common assets
were dedicated to that job? Martinez answered `yes'
and the listed additional process steps and considera-
tions.

� de�ne product line strategy requirements
� how do new product requirements impact the
product line now and in the future?

� time of product releases and restructuring
� how to manage organizational accountabilities?
� impact on system resources
� change control

All this has resulted in a drive towards commonality
and modularity. There had been too many experiences
of just reusing code. That saved upfront but did not
save in the long term. The common part is about
60-70%. There is additionally a 10% investment on
maintenance, update and restructuring on the base
(this is viewed as preventive maintenance).

The successful cases of product lines within Mo-
torola were those that started as single products and
then grew an architecture for a product line out of
those initial products. Moreover, since everything we
do is in the wireless communications domain, we do
not talk about the domain.

Balzer reported on their experience using genera-
tors for product lines and how it a�ected the devel-
opment process. Using four di�erent domains and
their associated generators, the development process
is very much a prototype oriented process: for each
new prototype you basically write a new speci�cation.
Further, they started with the normal case to get a
running version of it and then added in the special
cases incrementally. This approach works especially
well when there exists a technique that automates the
building of the system. This immediacy provided by

the prototype also provides valuable feedback in the
development process. In addition it is important to
add visualization techniques to show what is happen-
ing in the product. An important lesson here is that
generative languages usually do not handle a large
amount of variability. Thus we need the technology
and tools for people specifying separate speci�cations
of di�erent aspects of the same product. We also then
need technology to compose and analyze and a model
manager to check for inconsistencies and incomplete-
nesses.

Conradi reported on the Reboot Project which re-
sulted in identifying 4 reuse processes and divided the
various issues into technical issues, project level issues
and organizational issues. There is a considerable lag
in the payo� but the payo� when it comes is consider-
able. A book is due out - Reuse: a holistic approach
from Wiley. The Renaissance project is a reverse en-
gineering of legacy systems project. The method con-
sists of various techniques: scrap and bury, maintain
and synthesize, rewrite, re-engineer. 25% of the e�ort
is to be spent on reengineering (5 people) continuously
re�ning assets in a back room activity where reusable
assets are discovered.

Estublier reported on their product family that pro-
vides software con�guration management. It is a fam-
ily because there are a set of versions for the prod-
uct. The management part of the product is concerned
with change control. We found that the change control
process was not well related to architectures or fam-
ilies of products, but was directly related to require-
ments, reliability, the size of teams, the time to mar-
ket and further maintenance constraints. The qual-
ity constraints included: strong boundaries between
activities, di�erent people for di�erent activities (for
example developers were di�erent from testers), tool
encapsulation, isolation of workspaces, reviews, and
clear decision processes. Perry pointed out that there
is a growing need for dynamic recon�guration that re-
quires di�erent kinds of CM support.

Boehm suggested additional product line processes:

� Asset Base Investment

{ domain scoping and modeling
{ domain architecting (interface speci�cations
and shared assumptions)

{ asset generalization (multiple use, certi�ca-
tions, legacy, COTS, adaptation)

� Asset Evolution

{ domain architecture evolution
{ generalized component evolution



{ synchronization of multiple stakeholder pro-
cesses

� Asset Base Management

{ catalog library management
{ work
ow management
{ accountability process

� Asset Composition Evolution

{ evaluation
{ tailoring and generalization
{ problem feedback
{ assimilation in products
{ product line integration

Klinger described Lockheed/Martin's approach to
developing domain engineering processes which is a
set of activities, products, roles and models. Domain
engineers de�ne the domain model which consists of
understanding the commonality and variability of the
features for the product line, the product model, the
process model and the environment model. They are
also responsible for the domain architecture. In terms
of the general processes, they have not found anything
di�erent from general development. The primary dif-
ference in the domain modeling approach was in look-
ing at the commonality and variability. This is also
where they felt they needed the most help. The ap-
plications engineers then used the asset base to build
the various products.

An added dimension to this approach comes from
the fact that stakeholders often have di�erent pro-
cesses. Boehm noted that we need support for look-
ing at variability across these processes as well as the
products.

Lehman asked what you had to do upfront in pro-
ducing a product line. He noted that domain analysis
and bounding the domain were incremental and evolu-
tionary. One �rst develops a preliminary de�nition of
the application domain. Then you identify the poten-
tially common functionality and behavior and identify
that common functionality with reuse potential. Next
you look at the areas of functional and behavioral con-

icts (these especially need to be recognized upfront
and not in the �eld). Given this understanding, you
are then at the point where you can de�ne an architec-
ture that takes into account both the commonalities
and the con
icts and that provides the base of the im-
plementations. This is obviously an idealized vision
and in reality the system must be under constant re-
view (especially in rechecking basic assumptions).

Heineman noted that you have existing processes
for building products that are fairly autonomous. At
some point you decide to make them into a product

line. At this point you need to consolidate and syn-
chronize your processes and consider their interdepen-
dencies and constraints. Just as in the product you
try to identify the core elements that are shared, you
need to identify the core process elements across the
various processes.

The ROADS project was reported on by Bandinelli
as a ESSI project in collaboration with Thompson
CSF. There were four experiments in introducing
reuse practices. The technologies used were SPC's
RSP (reuse-driven software processes) and Reboot.
The domains of the experiments were air tra�c con-
trol (improve time to market), command and control
(improve reliability), training systems (reducing costs)
and tra�c management (improve 
exibility and ro-
bustness). Given these di�erent objectives for intro-
ducing reuse, how do you transition these processes
into use and what are the priorities in the transitions?
Can we achieve all the objectives within these ap-
proaches or are there trado�s (for example lower costs
at the expense of time to market)?

There were three problems encountered. The �rst
was the problem of whether to be organized as tech-
nical business units or strategic business units. The
second was how to compose the product line engineer-
ing teams. The third was how to synchronize product
line engineering with product engineering.

Osterweil noted that if one of the aims is to im-
prove quality and increase time to market and that if
we know that 50% of development is testing, etc, then
why have none of the discussion addressed the prob-
lem of testing in product lines. Everyone talks about
reusing architecture but not test suites. The latter
may represent a greater point of leverage to save time.


