Performance Analysis of mmWave Ad Hoc Networks


Andrew Thornburg, Tianyang Bai, and Robert W. Heath, Jr.


Submitted to IEEE Transactions on Signal Processing, December 2014


Ad hoc networks provide a flexible, infrastructure-free means to communicate between soldiers in war zones, aid workers in disaster areas, or consumers in device-to-device (D2D) applications. Ad hoc networks, however, are still plagued by interference caused by uncoordinated transmissions which leads to poor scaling due to distributed coordination. Communication with millimeter-wave (mmWave) devices offers hope to \emph{ad hoc} networks through higher bandwidth, reduced interference due to directional antennas, and weaker interference power due to building blockage. This paper uses a stochastic geometry approach to characterize the one-way and two-way signal-to-interference ratio (SINR) distribution of a mmWave ad hoc network with directional antennas, random blockages, and ALOHA channel access. The effect of random receiver location is quantified which shows that random receiver distances do not alter the SINR distribution beyond knowledge of the mean receiver position. A method for computing the distribution of mmWave ad hoc interference-to-noise ratio which shows that mmWave ad hoc networks can still be interference limited. Several reasonable simplifications are used to derive the transmission capacity and area spectral efficiency. The performance of mmWave is then analyzed in terms of rate coverage. The results show that mmWave networks can support higher densities and larger spectral efficiencies, even in the presence of blockage, compared with lower frequency communication for certain link distances. Due to the increased bandwidth, the rate coverage of mmWave can be much greater than lower frequency devices.

[download full paper]