Achievable Rates of Multi-User Millimeter Wave Systems with Hybrid Precoding


Ahmed Alkhateeb, Robert W. Heath, Jr., and Geert Leus


in Proc. of the IEEE Int. Conf. on Communications Workshops, London, UK, June 8-12, 2015.


Millimeter wave (mmWave) systems will likely employ large antenna arrays at both the transmitters and receivers. A natural application of antenna arrays is simultaneous transmission to multiple users, which requires multi-user precoding at the transmitter. Hardware constraints, however, make it difficult to apply conventional lower frequency MIMO precoding techniques at mmWave. This paper proposes and analyzes a low complexity hybrid analog/digital precoding algorithm for downlink multiuser mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is motivated by the requirement to reduce the power consumption of the complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. For this algorithm, we derive a lower bound on the achievable rate for the case of single-path channels, show its asymptotic optimality at large numbers of antennas, and make useful insights for more general cases. Simulation results show that the proposed algorithm offers higher sum rates compared with analog-only beamforming, and approaches the performance of the unconstrained digital precoding solutions.