Coverage in Dense Millimeter Wave Cellular Networks

Tianyang Bai and Robert W. Heath Jr.
The University of Texas at Austin

www.profheath.org
Why mmWave for Cellular?

Huge amount of spectrum available in mmWave bands*

- Cellular systems live with limited microwave spectrum ~ 600MHz
- 29GHz possibly available in 23GHz, LMDS, 38, 40, 46, 47, 49, and E-band

Technology advances make mmWave possible

- Silicon-based technology enables low-cost highly-packed mmWave RFIC**
- Commercial products already available (or soon) for PAN and LAN
- Already deployed for backhaul in commercial products

Antenna Arrays are Important

Narrow beams are a new feature of mmWave

- Reduces fading, multi-path, and interference
- Implemented in analog due to hardware constraints

Arrays will change system design principles
Sensitivity to Blockages

- Signal and interference may be either LOS or NLOS
- Users may connect to a further unblocked base station
- Strong interferers may be blocked

LOS channel
Path loss exponent 2

NLOS channel
Path loss exponent 4
Additional loss

Need to include propagation models in the analysis

Contributions

- Incorporate beamforming & LOS/NLOS into coverage analysis
 - RX and TX communicate via steered directional beams
 - Steering directions at interfering BSs are random
 - Paths may be LOS or NLOS depending on blockage density

- Approach is to leverage stochastic geometric analysis of cellular
 - Extends work by [AndrewsGantiBaccelli2011] to include mmWave features
 - Extends our work [BaiHeath2013] with simplified expressions for dense networks
System Model
Stochastic Geometry for Cellular

- Stochastic geometry is a tool for analyzing microwave cellular
 - Reasonable fit with real deployments
 - Closed form solutions for coverage probability available
 - Provides a system-wide performance characterization

Need to incorporate LOS/non-LOS links and directional antennas

Accounting for Beamforming

- Each base station is marked with a directional antenna
 - Antenna directions of interferers are uniformly distributed
- Use “sector” pattern in analysis for simplicity
 - Antenna pattern fully characterized by θ, M and m
Incorporating Blockages

- Use random shape theory to model buildings
 - Model random buildings as a rectangular Boolean scheme
 - Buildings distributed as PPP with independent sizes & orientations
- Compute the LOS probability based on the building model
 - # of blockages on a link is a Poisson random variable
 - The LOS probability that no blockage on a link of length R is $e^{-\beta R}$

Proposed mmWave Model

- Use stochastic geometry to model BSs as marked PPP
- Model the steering directions as independent marks of the BSs
- Use random shape theory to model buildings
 - Model the building as rectangle Boolean schemes
 - Different path loss exponents for LOS and NLOS paths

(c) Robert W. Heath Jr. 2013
System Parameters

Different path loss model for LOS and non-LOS links

- Line-of-sight with probability $e^{-\beta R}$: average LOS range is $1/\beta$

 The fraction of land covered by buildings

 $\beta = \frac{2\eta([L] + [W])}{\pi[W][L]}$

 Average building length and width

- LOS path Loss in dB: $PL_1 = C + 20 \log R(\text{m})$
- Non-LOS path loss in dB: $PL_2 = C + K + 40 \log R(\text{m})$
- 28GHz system: let $C=70$ dB, $K=10$ dB

General small scale fading h

- No fading case: small scaling fading is minor in mmWave [RapSun]

Link budget

- Tx antenna input power: 30dBm
- Signal bandwidth: 500 MHz (Noise: -87 dBm)
- Noise figure: 5dB
Coverage Results
SINR Expressions

\[\text{SINR} = \frac{M_r M_t H_0 \ell(r_0)}{N_0/P_t + \sum_{k>0} A_k B_k H_k \ell(r_k)}, \]

where

\[H_0 \ell(r_0) = \min_{k>0} \{ H_k \ell(r_k) \}, \]

\[A_k = \begin{cases} M_t & \text{w. p. } \frac{\theta_t}{2\pi} \\ m_t & \text{w. p. } 1 - \frac{\theta_t}{2\pi} \end{cases}, \]

\[B_k = \begin{cases} M_r & \text{w. p. } \frac{\theta_r}{2\pi} \\ m_r & \text{w. p. } 1 - \frac{\theta_r}{2\pi} \end{cases}, \]

\[\ell(x) = \begin{cases} C x^{-2} & \text{w. p. } e^{-\beta x} \\ C' K x^{-4} & \text{w. p. } 1 - e^{-\beta x} \end{cases}. \]

- Serving BS and User connect via main lobe
- General small-scale fading
- Connecting to the strongest signal before BF
- Array gain of the TX antenna
- Array gain of the RX antenna
- Path Loss of LOS or non-LOS

Use stochastic geometry to compute SINR distribution
Theorem 1 [mmWave Coverage probability]

The coverage probability $\mathbb{P}[\text{SINR} > T]$ can be computed as

$$
\mathbb{P}(\text{SINR} > T) = \int_{-\infty}^{\infty} \int_{0}^{\infty} U(x, t) f_{L^*}(x) \frac{e^{j 2\pi t/T} - 1}{j 2\pi t} \, dx \, dt
$$

where

$$
U(x, s) = \exp \left[-\frac{sx}{M_r M_t \rho} + \int_{x}^{\infty} \left(p_t p_r e^{-\frac{sx}{u}} + (1 - p_t) p_r e^{-\frac{s x m_t}{u M_t}} + p_t (1 - p_r) e^{-\frac{s x m_r}{u M_t}} \right) \Lambda(du) \right],
$$

$$
\Lambda(x) = 2\pi \lambda E_h \left[\int_{0}^{(\frac{x h}{K})^{0.25}} t \left(1 - e^{-\beta t} \right) dt + \int_{0}^{\sqrt{x h}} t e^{-\beta t} dt \right],
$$

$$
f_{L^*}(x) = -\frac{d}{dx} e^{-\Lambda(x)}.
$$

Good coverage requires dense BS deployments

- LOS BSs exist with high probability in dense networks
- Noise and NLOS interference become much weaker than LOS interf.

Theorem 1 sometimes inefficient to compute

- The underlying reason is that LOS region is very irregular
- Need to simplify expressions in Theorem 1

Approximate LOS region & neglect NLOS contributions
Dense Network Analysis (2/3)

Theorem 2 [Coverage probability with dense BSs]
In dense networks with a **LOS path loss exponent of 2**

\[
\mathbb{P}(\text{SINR} > T) \approx \rho e^{-\rho} \sum_{n=1}^{N} (-1)^{n+1} \binom{N}{\ell} \int_{0}^{1} \prod_{k=1}^{4} e^{\rho a_k (e^{-n b_k t} - te^{-n b_k})} \left(\frac{1 - e^{-n \eta b_k t}}{1 - e^{-n \eta b_k}} \right)^{n \rho a_k b_k t} dt,
\]

where \(a_k\) and \(b_k\) are constants determined by RX and TX antenna patterns.

- Derive approximate bounds on SINR distribution in dense network

 - Approximate LOS region as a ball with equal average size
 - Ignore noise, approximate LOS fading with high order gamma distribution
 - Use Alzer’s inequality to further simplify to single-finite integral
 - Provides approximate upper and lower bounds on SINR
 - Can be extended to other LOS exponents

How accurate is the approximations?
Dense Network Analysis (3/3)

- Larger N (more terms) increases accuracy
- $N=5$ terms generally provides acceptable accuracy

What is the design insight from coverage analysis?
Insights for Dense Networks

\[P(\text{SINR} > T) \approx \rho e^{-\rho} \sum_{n=1}^{N} (-1)^{n+1} \left(\frac{N}{\ell} \right) \int_{0}^{1} \prod_{k=1}^{4} e^{\rho a_k (e^{-n b_k t} - te^{-n b_k})} \left(\frac{1 - e^{-n \eta b_k t}}{1 - e^{-n \eta b_k}} \right)^{n a_k b_k t} \, dt \]

- Given antenna patterns, SINR only depends on \(\rho \)
 \[\rho = \frac{\text{Average size of LOS region}}{\text{Average cell size}} \]

- The larger \(\rho \), the denser the BSs (and closer)

- Increasing BS density need not improve SINR
 - SINR goes to zero in a infinitely dense network
 \[\lim_{\rho \to \infty} \text{SINR} \stackrel{p.}{=} 0 \]
 - Optimal BS density is finite

What is the optimal BS density in dense networks?
Finding Optimal BS Density

- Exhaustive search optimal BS density using Theorem 2
 - Maximize the coverage probability given a target SINR
 - Much efficient than simulations with minor errors
 - Optimal cell radius is approximately 2/3 of the avg. LOS range.

Tx directivity gain: 20 dB
Tx beamwidth: 30 degree
Rx directivity gain: 10 dB
Rx beamwidth: 10 dB
Avg. LOS range: $\frac{1}{\beta} = 141$ m
Target SINR: $T = 10$ dB

Average cell radius

Increasing BS density need not improve SINR

Optimal BS density is finite
Finding Optimal BS Density

Exhaustive search optimal BS density using Theorem 2

- Maximize the coverage probability given a target SINR
- Much efficient than simulations with minor errors
- Optimal cell radius is approximately 2/3 of the avg. LOS range.
Achievable Rate Analysis

Given coverage probability, the achievable rate is

\[R = \frac{1}{\ln(2)} \int_0^C \frac{P_c(T)}{1 + T} dT \]

Microwave network 4X4 SU MIMO with bandwidth 50MHz:
- Spectrum efficiency is 4.56 bps/ Hz
- Data rate is 228 Mbps (invariant with the cell size \(R_c \))

mmWave network with bandwidth 500MHz:

<table>
<thead>
<tr>
<th>(M)</th>
<th>(R_c)</th>
<th>100m</th>
<th>200m</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 dB</td>
<td>1.61 Gbps</td>
<td>1.61 Gbps</td>
<td></td>
</tr>
<tr>
<td>20 dB</td>
<td>2.91 Gbps</td>
<td>1.88 Gbps</td>
<td></td>
</tr>
</tbody>
</table>

Average cell radius

Tx beamforming Gain

mmWave achieves high gain in average rate
Conclusions
Going Forward with mmWave

- mmWave coverage probability and rate
 - Need to include both LOS and Non-LOS conditions
 - Interference is reduced by directional antennas and blockages
 - Good rates and coverage can be achieved

- Theoretical challenges abound
 - Analog beamforming algorithms & hybrid beamforming
 - Channel estimation, exploiting sparsity, incorporating robustness
 - Multi-user beamforming algorithms and analysis
 - Microwave-overlaid mmWave system a.k.a. phantom cells
 - Going away from cells to a more ad hoc configuration