Millimeter wave as the future of 5G

Robert W. Heath Jr., PhD, PE

Cullen Trust Endowed Professor
Wireless Networking and Communications Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Heath Group in the WNCG @ UT Austin

12 PhD students

- mmWave precoding
- mmWave for tactical ad hoc networks
- mmWave wearables
- mmWave for infrastructure-to-car
- mmWave communication and radar for car-to-car
- next generation mmWave LAN
- mmWave licensed shared access for 5G
- mmWave 5G performance
Why millimeter wave for 5G?

- Huge amount of spectrum possibly available in mmWave bands
- Technology advances make mmWave possible for cheap consumer devices
- mmWave research is as old as wireless, e.g. Bose 1895 and Lebedew 1895
MmWave is coming for consumers

<table>
<thead>
<tr>
<th>Standard</th>
<th>Bandwidth</th>
<th>Rates</th>
<th>Approval Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.11ad</td>
<td>2.16 GHz</td>
<td>6.76 Gbps</td>
<td>Dec. 2012</td>
</tr>
</tbody>
</table>

- Standards developed @ unlicensed 60 GHz band
 - WirelessHD: Targeting HD video streaming
 - IEEE 802.11ad: Targeting Gbps WLAN
- Compliant products already available
 - Dell Alienware laptops, Epson projectors, etc.
 - 11ad Chipset available from Wilocity, Tensorcom, Nitero
- Only single stream MIMO beamforming
 - Next generation will likely support multi-stream (>20 Gbps)*

Spectrum considerations

- There is no specific allocation for 5G cellular at millimeter wave yet
- Some candidate bands and their bandwidth (many shared with fixed and mobile satellite, and federal / non-federal users)

<table>
<thead>
<tr>
<th>Band</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 GHz (LMDS)</td>
<td>1.3 GHz</td>
</tr>
<tr>
<td>39 GHz</td>
<td>1.4 GHz</td>
</tr>
<tr>
<td>37 / 42 GHz</td>
<td>2.1 GHz</td>
</tr>
<tr>
<td>71-76 GHz 81-86 GHz (E-Band)</td>
<td>10 GHz</td>
</tr>
</tbody>
</table>

- FCC released a notice of inquiry to start the conversation about mmWave
 - NOI posses many questions that are being addressed by research at UT
- Not obvious that exclusive licensing will happen in mmWave
 - Shared licensed access may be attractive due to reduced co-channel interference
 - Cognitive radio techniques may allow co-existence with satellite or radar

See UT’s response to comments here http://apps.fcc.gov/ecfs/comment/view?id=60001017585
How does mmWave enable ultrafast broadband?

#1 spectrum
- more spectrum (10x or more)
- larger channels (5-100x)

#2 large arrays & narrow beams
- reduced interference (better SINR)
- spectrum reuse (multiple users share same channel)
Role of MIMO for mmWave

millimeter wave band

| 1.3 GHz | 2.1 GHz | 7 GHz (unlic) | 10 GHz |

28 GHz 37 / 42 GHz 60GHz E-Band … to 300 GHz

spatial multiplexing & beamforming just beamforming

Spatial multiplexing for spectral efficiency

multiple data streams

Beamforming for antenna gain

isotropic radiator

mmWave aperture

sub-6GHz aperture

TX RX

Observations about antenna arrays

- Large number of antennas used at the base station and mobile station
 - Antennas will be small -> no form factor challenges at the base station
- Directionality of the patterns changes many aspects of system design
 - Physical layer signal processing
 - Mobility management (e.g. initial access and handoff)
 - Interference management
Blockages will become more severe

- blockage due to buildings
- line-of-sight
- non-line-of-sight
- blockage due to people
- hand blocking
- self-body blocking

many forms of blockage have yet to be modeled and analyzed
Observations about blockage

- **Building blockage**
 - High density of infrastructure required to cover areas around buildings

- **Body blockage and self-body blockage**
 - Need rapid switching between line-of-sight and non-line-of-sight paths
 - Macro diversity where users associate with multiple base stations

- **Hand blockage**
 - Array diversity on the handset
Analytical model for mmWave cellular systems

Random building model for LOS/NLOS links

- Exponent proportional to building density

Simplified model for directional beamforming

- Back lobe gain
- Main lobe array gain
- Main lobe beamwidth

Interfering Transmitters

Buildings

Typical Receiver

LOS path

NLOS Path

 Associated Transmitter

Main lobe beamwidth

Main lobe array gain

Back lobe gain

Random building model

$e^{-\beta d}$

Exponentially decaying LOS prob.

Performance calculations

<table>
<thead>
<tr>
<th>scenario</th>
<th>5% rate (Mbps)</th>
<th>avg rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF with 1TX 1RX</td>
<td>1.26</td>
<td>67.53</td>
</tr>
<tr>
<td>UHF with 4TX 4RX</td>
<td>13.22</td>
<td>148.95</td>
</tr>
<tr>
<td>mmWave with low density and building blockages</td>
<td>2.95</td>
<td>2579.62</td>
</tr>
<tr>
<td>mmWave with high density and building blockages</td>
<td>2427.2</td>
<td>3716.41</td>
</tr>
<tr>
<td>mmWave with high density and building / body blockages</td>
<td>2106.53</td>
<td>3682.32</td>
</tr>
<tr>
<td>UHF & mmWave with high density and building blockages</td>
<td>2434.1</td>
<td>3733.3</td>
</tr>
</tbody>
</table>

UHF (2 GHz) parameters:
- Carrier frequency: 2 GHz
- BW: 50 MHz
- ISD: 500 m
- TX power: 46 dBm
- MIMO with ZF receiver

MmWave parameters:
- Carrier frequency: 28 GHz
- BW: 500 MHz
- ISD: 100 m (Dense)
- 200m (Sparse)
- TX power: 30 dBm
- BS beamwidth: 10 degree
- BS beamforming gain: 20 dB
- MS beamwidth: 90 degree
- MS beamforming gain: 6 dB
- Body blocking loss: 30 dB
- Body blocking prob.: 1/6

Building statistics:
- LOS range: 200 m (Austin downtown)

Rate computation:
- 5 dB gap from Shannon
- SINR clipped by 30 dB
- Maximum rate from two bands all outdoor users
Conclusion

mmWave BS

Microwave Macro BS

Multiple-BS access for fewer handovers and high rate

Buildings

Wireless backhaul

Data center

LOS links

Control signals

Indoor user

Femtocell

Non-line-of-sight (NLOS) link

mmWave D2D

mmWave will impact every aspect of cellular communication

https://www.youtube.com/watch?v=BQ45FuGpFQ0