Figure 1-1 Basic Gates

NOT: C = A' EXCLUSIVE OR: $C = A \oplus B$

Figure 1-2 Full Adder

(b) Truth Table

Sum = X'Y'Cin + X'YCin' + XY'Cin' + XYCin = $X \oplus Y \oplus Cin$ Cout = X'YCin + XY'Cin + XYCin' + XYCin = XY + XCin + YCin

Figure 1-3 Four-Variable Karnaugh Maps

F = m(0,2,3,5,6,7,8,10,11) + d(14,15)= C + B' D' + A' BD = (B' + C + D) (B + C + D') (A'+B')

Figure 1-4 Selection of Prime Implicants

Figure 1-5 Simplification Using Map-Entered Variables

$$G = MS_0 + EMS_1 + FMS_2$$
$$= A'B' + ACD + EA'D + FAD$$

Figure 1-6 NAND and NOR Gates

Figure 1-7 Conversion to NOR Gates

(b) Equivalent NOR-gate network

Figure 1-8 Conversion of AND-OR Network to NAND Gates

Figure 1-9 Elimination of 1-Hazard

Figure 1-10 Clocked D Flip-flop with Rising-edge Trigger

Figure 1-11 Clocked J-K Flip-flop

 $Q^+ = JQ' + K'Q$

Figure 1-12 Clocked T Flip-flop

 $Q^+ = QT' + Q'T = Q \oplus T$

Figure 1-13 S-R Latch

 $Q^+ = S + R'Q$

Figure 1-14 Transparent D Latch

Figure 1-15 Implementation of D Latch

Figure 1-16 General Model of Mealy Sequential Machine

Figure 1-17 State Graph and Table for Code Converter

(a) Mealy state graph

From Page 20

I. States which have the same next state (NS) for a given input should be given adjacent assignments (look at the columns of the state table).

II. States which are the next states of the same state should be given adjacent assignments (look at the rows).

III. States which have the same output for a given input should be given adjacent assignments.

I. (1,2) (3,4) (5,6) (in the X=1 column, S₁ and S₂ both have NS S₄; in the X=0 column, S₃ & S₄ have NS S₅, and S₅ & S₆ have NS S₀)

II. (1,2)(3,4)(5,6) (S₁ & S₂ are NS of S₀; S₃ & S₄ are NS of S₁; and S₅ & S₆ are NS of S₄)

III. (0,1,4,6) (2,3,5)

	NS		Z			Q1 + Q2 + Q3 +		Z	
PS	X=0	X=1	X=0	X=1	Q1Q2Q3	X=0	X=1	X=0	X=1
S0	S1	S2	1	0	000	100	101	1	0
S1	S3	S4	1	0	100	111	110	1	0
S2	S4	S4	0	1	101	110	110	0	1
S3	S5	S5	0	1	111	011	011	0	1
S4	S5	S6	1	0	110	011	010	1	0
S5	S0	S0	0	1	011	000	000	0	1
S6	S0	-	1	-	010	000	xxx	1	Х
	•				001	XXX	XXX	Х	Х

S0 = 000, S1 = 100, S2 = 101, S3 = 111, S4 = 110, S5 = 011, S6 = 010

Figure 1-19 Karnaugh Maps for Figure 1-17

Figure 1-20 Realization of Code Converter

Figure 1-21 Derivation of J-K Input Equations

(a) Derivation using separate J-K map

(b) Derivation using the shortcut method

Figure 1-22 Coding Schemes for Serial Data Transmission

Figure 1-23 Moore network for NRZ-to-Manchester Conversion

(a) Conversion network

(S_0) 0 (S_1)	Present	Next State		Present	
$\left(\begin{array}{c} \mathbf{O} \\ \mathbf{O} \end{array}\right) \xrightarrow{\mathbf{O}} \left(\begin{array}{c} \mathbf{O} \\ \mathbf{O} \end{array}\right)$	State	X = 0	X = 1	Output (Z)	
	S ₀	S ₁	S3	0	
1 1 0 0	S ₁	S ₂	—	0	
	S ₂	S ₁	S ₃	1	
$\left(\begin{array}{c} 0 \\ 1 \end{array}\right) \leftarrow 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	S ₃	-	S ₀	1	

(b) State Graph

(c) State table

Figure 1-24 Timing for Moore Network

Figure 1-25 Determination of Equivalent States

$$s_i \equiv s_j$$
 iff $\underline{Z}_1 = \underline{Z}_2$
for every input sequence X

Figure 1-26(i) State Table Reduction

Present State	Next State X = 0 1	Present Output X = 0 1		
а	c f	0 0		
b	d e	0 0		
С	Иa g	0 0		
d	b g	0 0		
е	e b	0 1		
f	f a	0 1		
g	c g	0 1		
h	c f	0-0		

a°b, c°d, e°f

Figure 1-26(iii) State Table Reduction

Present State	Next State X = 0_1	Present Output X = 0_1	$a \equiv b, c \equiv d, e \equiv f$
a b	c f d e	0 0 0 0	Present $X = 0$ 1 $X = 0$ 1
С	∦a g	0 0	a c e 0 0
d	b g	0 0	c a g 0 0
е	e b	0 1	e e a 0 1
f	f a	0 1	g c g 0 1
g	c g	0 1	
h	c f	0-0	Final Reduced Table

Figure 1-27 Timing Diagram for Code Converter

Figure 1-29 Setup and Hold Times for D Flip-flop

Figure 1-30 Setup and Hold Timing for Changes in X

Figure 1-31 Synchronous Digital System

Figure 1-32 Timing Chart for System with Falling-Edge Devicves

Figure 1-33 Gated Control Signal

(a) Faling-edge device

(b) Rising-edge device

Figure 1-34 Timing Chart with Rising-Edge Devices

Synchronous Design Principals (from page 34)

- Method: All clock inputs to flip-flops, registers, counters, etc. are driven directly from the system clock or from the clock ANDed with a control signal.
- Result: All state changes occur immediately following the active edge of the clock signal.
- Advantage: All switching transients, switching noise, etc. occur between clock pulses and have no effect on system performance.

Figure 1-37 Four Kinds of Tristate Buffers

Figure 1-38 Data Transfer Using Tristate Bus

