
8/30/03

Corrections for Digital Systems Design Using VHDL

Look on the back of the title page in your copy of the textbook. If there is a line that reads:
 00 01 -- 10 9 8 7 6 5 you have the 5th printing of the text, and you should use the errata sheet given
below. If there is a line that reads 00 01 -- 10 9 8 7 6 5 4 you have the 4th printing of the text, etc.
If you find any additional errors in the 5th printing, please report them to Dr. Roth: roth@ece.utexas.edu
and receive a $5 reward (except for formatting and other trivial errors).
Corrected VHDL code is at http://www.ece.utexas.edu/~roth/VHDL_book/vhdl_code/

line –7 means 7th line from bottom, etc.

Corrections for Digital Systems Design Using VHDL, 4th printing
(corrections marked * also apply to the 5th printing)

p. 12, Figure 1-8 (c): B' should be B
p. 27, Figures 1-26(b) and (c), lower right square: e-f should be c-f
p. 93, 4th line above Figure 3-9: F3 should be F2

*p. 106, Figure 3-20 should be

*p. 111, last line: C1 = C2 = C3 should be C0 = C1 = C2
*p. 132, line 2, add after 2ntad + tg: (n ≥ 4)
p. 147, line 4: 4 should be 5
*p. 168, line 11: add Done <= '0';
p. 182, line –13: Figure 5-17 should be Figure 5-19
p. 190, line 8: Figure 5-28 should be Figure 5-29
p. 213, line 12: Figure 5-32 should be Figure 5-33
p. 213, line –3: S0 should be S1
*p. 254, Figure 7-8: LZ should be L2, and LFZ should be LF2
p. 286, line 9: std_logic vectors should be std_logic
p. 290, Figure 8-18, 6th line: 0 to 7 should be 0 to 6
p. 322, 8th line of Figure 9-21: t11_max should be t11
p. 323, lines 9 and 14: t10_min should be t11
p. 368, Figure 10-29: interchange connections to B1 and B2 as
follows:

p. 368, line 2 after Figure 10-29: Figure 8-12 should be Figure 8-13

8/30/03

p. 384, line –15: clk_divdr should be ctr2
p. 385, line 7: RDRE should be RDRF
p. 392, line –4: Table 11-1(b) should be Table 11-2(b)
p. 439, line 23: delete C <= ‘0’;
p. 469, line -4: 144 should be 114

Corrections for Digital Systems Design Using VHDL, 3rd printing

p. 12, Figure 1-8 (c): B' should be B
p. 27, Figures 1-26(b) and (c), lower right square: e-f should be c-f
p. 93, 4th line above Figure 3-9: F3 should be F2

p. 111, last line: C1 = C2 = C3 should be C0 = C1 = C2
p. 112, Figure 3-25, replace with the following:

S1
C0C1C2

S5
C0C1C2

S4
 C2

S0

S2
C0

S3
C1

0

Kd K' K'

K/V K/V

Kd'

1
1 / V

Kd'

Kd

p. 132, line 2, add after 2ntad + tg: (n ≥ 4)
p. 147, line 4: 4 should be 5
p. 168, line 11: add Done <= '0';
p. 182, line –13: Figure 5-17 should be Figure 5-19
p. 190, line 8: Figure 5-28 should be Figure 5-29
p. 213, line 12: Figure 5-32 should be Figure 5-33
p. 213, line –3: S0 should be S1
p. 226, line –15: interchange G and F
p. 259, Fig. 7-13, lower right, add label to xor gate output: S4
p. 262, line 12: are are should be are
p. 286, line 9: std_logic vectors should be std_logic
p. 290, Figure 8-18, 6th line: 0 to 7 should be 0 to 6
p. 292, lines 5-7, replace "added Nextstate <= '0'; ... unwanted latch." with "changed the if statements

so that Nextstate is always specifed even if there is no change of state. For example, in the fifth
line of the first process, we added else Nextstate <= 0; before end if, and we added Nextstate <= 1;
at the end of the seventh line."

p. 311, line 24, add: next_state <= 3;
p. 322, 8th line of Figure 9-21: t11_max should be t11
p. 323, line 14: t10_min should be t11
p. 324, line 7: now /= 0 ns should be state = T2
p. 324, line –7 should read: where dbus'last_event is the time since the

8/30/03

p. 324, line –10: when the chip is selected and now = 0 should be in state T2
p. 335, problem 9.2(b), last line: unknown should be the value just stored
p. 368, Figure 10-29: interchange connections to B1 and B2 as follows:

p. 368, line 2 after Figure 10-29: Figure 8-12 should be Figure 8-13
p. 384, line –15: clk_divdr should be ctr2
p. 385, line 7: RDRE should be RDRF
p. 392, line –4: Table 11-1(b) should be Table 11-2(b)
p. 414, line –14: ADDR, should be ADDR0, and line –8: ADDR should be ADDR2
p. 439, line 23: delete C <= ‘0’;
p. 441, line 20: OP=JMP should be (OP=JMP and reg_mem)
p. 441, line 22: OP=JSR should be (OP=JSR and reg_mem)
p. 447, line 1, add before end if: selMd2 <= '0';
p. 449, line –13: JMP='1' should be (JMP='1' and reg_mem)
p. 449, line –11: JSR='1' should be (JSR='1' and reg_mem)
p. 451, add after line 4: end process;

Corrections for Digital Systems Design Using VHDL, 1st and 2nd printing

p. 9, line 18: "ABC' or AC'D. Thus one" should be "AB. Thus the"
p. 9, line 20: ABC' should be AB
p. 9, line 22: (A' + B' + C) should be (A' + B')
p. 12, Figure 1-8 (c): B' should be B
p. 21, Figure 1-19, map for Z, within loop on right: change 0 to 1
p. 26, line 18: fe ≡/ should be ga ≡/ ; line 19: e–f should be e–g

p. 27, Figures 1-26(b) and (c), lower right square: e-f should be c-f
p. 41, top figure: insert > in front of CK
p. 53, line 13: -- see Note 3 should be moved right to align with other comments
p. 55, first line after Figure 2-9: conditional assignment should be conditional signal assignment
p. 55, lines 11 & 12 should be: A behavioral model of the 4-to-1 MUX of Figure 2-9 using a
 conditional signal assignment statement is
p. 67, line –6: vlaues should be values
p. 81, Problem 2.4, line –7: A <= '1' should be A = '1'
p. 81, Problem 2.4, line –4: < = should be <=
p. 82, Problem 2.9(b): Z should be D and B
p. 82, Prob. 2.10(a): Problem 1.12 should be Problem 1.10;
p. 82, Prob. 2-10(b): Z is should be S and V are
p. 89, Figure 3-3, line 6: omit blank line above end ROM1_2;
p. 93, 4th line above Figure 3-9: F3 should be F2

p. 105, Figure 3-19, line 3: out should be inout

8/30/03

p. 106, line 9: 30 should be 20
p. 110, Figure 3-22: add horizontal line at top of figure
p. 111, last line: C1 = C2 = C3 should be C0 = C1 = C2
p. 112, Figure 3-25, replace with the following:

S1
C0C1C2

S5
C0C1C2

S4
 C2

S0

S2
C0

S3
C1

0

Kd K' K'

K/V K/V

Kd'

1
1 / V

Kd'

Kd

p. 115, 10th line above Figure 3-27, near end of line, q3 should be Q3.
p. 120, Problem 3-10(c): an SM chart should be a state graph
p. 132, line 2, add after 2ntad + tg: (n ≥ 4)
p. 133, line –5: move 1.110001 right to align decimal point with line above
p. 136, Figure 4-11: add a self-loop labeled St'/0 to state S0; line –2: use should be in bold face type
p. 137, line –10: move "--output product" to end of previous line
p. 140, line –2: delete "part of the"
p. 140, line –1: replace "After" with "In the second process, after"
p. 141-142, Figure 4-16: Replace with attached copy. (Although the code in the book is correct, it is
not consistent with the test bench of Figure 4-14. It is better to use a two-process model with one
process for the combinational logic and one for the register updates.)
p. 143, Figure 4-18, add before begin: alias M: bit is B(0);
p. 145, first row of boxes below figure: add a 1 in a box at the right end
p. 145, at bottom of page: move dashed line one place to the right
p. 146, line 4: move 1 1 0 1 one place to the left
p. 147, line 4: 4 should be 5
p. 150, Figure 4-22, two occurrences of: Co1 should be Cm1
p. 154, line –3: multiplier should be divider
p. 157, problem 4.8(a): delete last sentence. Add: Use a serial adder to add the muliplicand to the
 accumulator.
p. 158, Problem 4-13(b): 3 states should be 5 states; 4-13(c): 4-5 should be 4-12
p. 158, Problem 4.13 (d): 4-12 should be 4-16
p. 164, Figure 5-4(b): add horizontal line at top of figure
p. 165, line –7: 10 should be 11
p. 168, line 11: add Done <= '0';
p. 179, line -2: A'BM' should be A'BM
p. 182, line –13: Figure 5-17 should be Figure 5-19
p. 190, line 8: Figure 5-28 should be Figure 5-29
p. 194, Problem 5.3: add 0 to right of X3 diamond, add 1 below X3 diamond
 leftmost output box: Z1 should be Z3

8/30/03

p. 197, line 2: both NST and NSF should be NST
p. 213, line 12: Figure 5-32 should be Figure 5-33
p. 213, line –3: S0 should be S1
p. 220, Figure 6-20, right side: interchange XQ and YQ; interchange X and Y
p. 221, Figure 6-21, add horizontal line from right edge of box H to nearest vertical line.
p. 225, last two lines: interchange G and F
p. 230, line –15: Figure 5-32(a) should be Figure 5-33(a)
p. 251, line 2: move multiply to end of previous line
p. 259, Fig. 7-13, lower right, add label to xor gate output: S4
p. 262, Problem 7.4, add: Fractions are 8 bits including sign, and exponents are 5 bits including sign.
p. 262, Problem 7.5, add: Fractions are 5 bits including sign, and exponents are 4 bits including sign
p. 267, Table 8-3, Returns column, line 10: move "reversed" down below "Nth index range"
p. 268, line 2: if has should be if it has
p. 283, line –9; for should be until
p. 286, line 9: std_logic vectors should be std_logic
p. 290, Figure 8-18, 6th line: 0 to 7 should be 0 to 6
p. 291, line –7: Z <= '0' should be Z <= '1'
p. 292, lines 5-7, replace "added Nexstate <= '0'; ... unwanted latch." with "changed the if statements

so that Nextstate is always specifed even if there is no change of state. For example, in the fifth line
of the first process, we added else Nextstate <= 0; before end if, and we added Nextstate <= 1; at
the end of the seventh line."

p. 293, Figure 8-20: delete first two lines
p. 296, line –10: (buff, test_data) should be (test_data, buff)
p. 299, Figure 8-21, line 7: test should be testfill; line 8: 2047 should be 8191
p. 299, Figure 8-21, line 17: is open read_mode should be open read_mode is
p. 299, lines 23 and –10: addr should be addr1
p. 301, Problem 8.6, for signal B: delete 'X' after 8 ns, ; also delete '1' after 12 ns,
p. 301, Problem 8.6(b): replace ", and draw a timing chart for each" with " . Assume that C drives an
 open-collector bus with a pull-up resistor (see Problem 8.5)."
p. 308, Figure 9-6, last waveform: old should be any
p. 311, line 24, add: next_state <= 3;
p. 313, insert after line 20: if CS_b = '0' then insert after line 23: end if;
p. 314, line 3: delete CS_b'delayed = '0' and
p. 314, add after line 8: -- The following code only checks for a WE_b controlled write:
p. 314, line 9: insert and CS_b'delayed='0' before then
p. 314, line –4 and p. 315, line 1: std_logic should be bit
p. 315, line 10: replace "write(2) with CS pulse" with "WE-controlled write"
p. 322, 8th line of Figure 9-21: t11_max should be t11
p. 323, lines 9 and 14: t10_min should be t11
p. 324, line 7: now /= 0 ns should be state = T2
p. 324, line 12: delete now –

8/30/03

p. 324, line –10: when the chip is selected and now = 0 should be in state T2
p. 324, line –8: (now – dbus'event) should be dbus'last_event
p. 324, line –7 should read: where dbus'last_event is the time since the
p. 326, replace Figure 9-23 with the following:

p. 326, line –4 should read: Delay from CLK high to CS low = tcc = 5 ns
p. 327, lines –1, –4, –14: tmc should be tcc
p. 328, Figure 9-25: t6max should be t10max ; tmc should be tcc

p. 329, line 10: delete new_we_b, line 14: delete new_we_b <= '1';
p. 331, line 1, end of line 1: delete |
p. 335, Problem 9.1(c): delete "and latest"
p. 335, replace Problem 9.1(d) with: For a write cycle, what is the minimum time that valid data must

be driven onto the data bus?
p. 335, problem 9.2(b), last line: unknown should be the value just stored
p. 335, Problem 9.3(a): replace "Add code that" with "Verify that the code"
p. 335, Problem 9.5: Figure 9-5 should be Figure 9-6
p. 338, lower figure: add a vertical line from the small circle down to the RW line
p. 344, lines –8 and –9: k should be k+1
p. 346, line –7: S3 should be S1
p. 349, line 6: shift 010 110 011 111 left to align with column headings
p. 354: replace Figure 10-16 with attached figure
p. 355, top flip-flop in IC1: D1 Q1 should be D0 Q0
p. 357, line 9 of item 6: Update-IR should be Update-DR
p. 363, Table 10-4, for n = 5: delete Q1 ⊕
p. 363, line above Figure 10-24, add: as for Figure 10-23
p. 364, 3rd and 6th lines after Figure 10-25: 1010 should be 0010; 5th line: 1000 should be 0000
p. 367, line 2: 10 should be 01
p. 368, Figure 10-29: interchange connections to B1 and B2 as follows:

p. 368, line 2 after Figure 10-29: Figure 8-12 should be Figure 8-13
p. 369, line 16, add after bit_vector: (3 downto 0)
p. 376, line above Figure 11-5: add semi-colon at end.
p. 377, line 3: 7 should be 8; line –7: TSRout should be TSR(0); line 12: of should not be bold

486
bus

Address
Decoder Memory

Controller Memory

Ads

CS1

CS

Address

Data
out

tACS

tAA

tmcRdy

CLK
tcc

8/30/03

p. 384, lines 3 and –9: CONVERT_INT should be CONV_INTEGER
p. 384, line –15: clk_divdr should be ctr2
p. 385, table above Figure 11-12: complement all entries in R_W column
p. 385, Figure 11-12, line 4: add rst_b, after clk,
p. 385, line 7: RDRE should be RDRF
p. 386, line 4: BclkX8, should be BclkX8: buffer std_logic;
p. 386, lines 14, 16, and 18: map should be in bold face type
p. 387, lines 1, 2, 3, 5, 6, and 7: ADDR should be ADDR2
p. 391, Table 11-2(b), line 8: LSR should be LSL
p. 392, line –4: Table 11-1(b) should be Table 11-2(b)
p. 395, Table 11-4, 1st column: INC dir should be INC dirm, INC ix should be INC ixm,
 INC ix1 should be INC ixm1
p. 396, "JSR ext" row, 4th column: P ← SP – 1 should be SP ← SP – 1
p. 396, "SWI" row, 3rd column: SP v SP – 1 should be SP ← SP – 1
p. 397, line –7: <= should be ←
p. 398, line –3 of Table 11-5: 42 should be 57
p. 398, last line of Table 11-5: 0305 should be 0304 (two places)
p. 403, line 11: asssert should be assert
p. 410, line 2: that should be than
p. 414, line –17: insert cs, before cpu_wr; line –4: cs, should be cs1, cs2,
p. 414, line –14: ADDR, should be ADDR0, and line –8: ADDR should be ADDR2
p. 414, Figure 11-24, lines –1 and –2: others should be in bold face type type
p. 415, lines 2, 3, 4, 5, 7, and 8: map should be in bold face type
p. 415, 1st and 5th lines below the VHDL code: 4020 should be 4010

p. 428, line –14: delete ;
p. 439, line 23: delete C <= ‘0’;
p. 441, line 20: OP=JMP should be (OP=JMP and reg_mem)
p. 441, line 22: OP=JSR should be (OP=JSR and reg_mem)
p. 443, delete lines 4 and 5
p. 444, insert after line 11: alias JMP : bit is opd(12); alias JSR : bit is opd(13);
p. 446, line 18: CONV_INEGER(TO_INTEGER should be conv_integer(TO_stdlogicvector
p. 447, line 1, add before end if: selMd2 <= '0';
p. 449, line –13: JMP='1' should be (JMP='1' and reg_mem)
p. 449, line –11: JSR='1' should be (JSR='1' and reg_mem)
p. 451, add after line 4: end process;
p. 456, last line of table: 32 should be 132

8/30/03

Figure 4-16 Model for 2's Complement Multiplier with Control Signals

-- This architecture of a 4-bit multiplier for 2's complement numbers
-- uses control signals.

architecture behave2 of mult2Cs is
 signal State, Nextstate: integer range 0 to 5;
 signal A, B: bit_vector(3 downto 0);
 signal AdSh, Sh, Load, Cm: bit;
 signal addout: bit_vector(4 downto 0);
 alias M: bit is B(0);
begin
 process (state, st, M)
 begin
 Load <= '0'; AdSh <= '0'; Sh <= '0'; Cm <= '0'; Done <= '0';
 case State is
 when 0=> -- initial State
 if St='1' then Load <= '1'; Nextstate <= 1; end if;
 when 1 | 2 | 3 => -- "add/shift" State
 if M = '1' then AdSh <= '1';
 else Sh <= '1';
 end if;
 Nextstate <= State + 1;
 when 4 => -- add complement if sign
 if M = '1' then -- bit of multiplier is 1
 Cm <= '1'; AdSh <= '1';
 else Sh <= '1';
 end if;
 nextstate <= 5;
 when 5 => -- output product
 done <= '1';
 nextstate <= 0;
 end case;
 end process;

 addout <= add4(A, Mcand, '0') when Cm = '0'
 else add4(A, not Mcand, '1');

 process
 begin
 wait until CLK = '1'; -- executes on rising edge
 if Load = '1' then -- load the multiplier
 A <= "0000";
 B <= Mplier;
 end if;
 if AdSh = '1' then -- Add multiplicand to A and shift
 A <= (Mcand(3) xor Cm) & addout(3 downto 1);
 B <= addout(0) & B(3 downto 1);
 end if;
 if Sh = '1' then
 A <= A(3) & A(3 downto 1);
 B <= A(0) & B(3 downto 1);
 end if;
 State <= Nextstate;
 end process;

 Product <= A(2 downto 0) & B;
end behave2;

8/30/03

Figure 10-16. State machine for TAP controller

(0)
Test-Logic-Reset

1

(1)
Run-Test/Idle

(2)
Select DR-Scan

(3)
Capture-DR

(4)
Shift-DR

(5)
Exit1-DR

(6)
Pause-DR

(7)
Exit2-DR

(8)
Update-DR

0
1

0

1

0

1

0

0

1

0

1

0

0

0

1

0

1 1

(9)
Select IR-Scan

(10)
Capture-IR

(11)
Shift-IR

(12)
Exit1-IR

(13)
Pause-IR

(14)
Exit2-IR

(15)
Update-IR

1

0

0

1

0

1

1

1

1 0 1 0

0

8/30/03

Cosmetic Corrections for 1st and 2nd Printing

p. 64, line –20: the word all in BITLIB.Bit_pack.all; should be in bold face type
p. 68, line –11: the word to in (1 to 4, 1 to 3) should be in bold face type
p. 72, line –9: the word range in in range loop should be in bold face type
p. 96, Figure 3-11, line 10: the word to in (1 to 3) should be in bold face type
p. 96, Figure 3-11, line 11: the words to and downto in (0 to 6, 7 downto 0) should be in bold face type
p. 117, line 7: the word to in (0 to 11) should be in bold face type
p. 117, line 10: the word downto in (3 downto 0) should be in bold face type
p. 127, line –3: the word to in 0 to 9 should be in bold face type
p. 127, Figure 4-5, line 7: the word use should be in bold face type
p. 139, line 9: the word library in library BITLIB; should be in bold face type
p. 151, Figure 4-23, line 2: the word use should be in bold face type
p. 225, Figure 6-26, line 3: BIT_PACK and ALL should be lower case
p. 306, Figure 9-4, CS waveform: move the vertical line associated with tCHZ to the right so it is
 centered on the sloping part of the waveform
p. 310, line –3: the word all in bitlib.bit_pack.all; should be in bold face type
p. 310, line –5: the word all in ieee.std_logic_1164.all; should be in bold face type
p. 312, line –7: the word all in bitlib.bit_pack.all; should be in bold face type
p. 312, line –9: the word all in ieee.std_logic_1164.all; should be in bold face type
p. 400, line –12: is should be in bold face type
p. 401, line 2: the word procedure in procedure ALU_OP should be in bold face type

