
Baker Franke 2018 1 of 4

EE 422C - HW 7
Cheaters!

125 Points
Due: Sunday 4/29/18 at 11:59pm

Catching Plagiarists
This lab presents a real problem that requires a software solution. Your goal is to try to
(quickly) determine the similarities between documents in a large set to see if you can
find out if plagiarism is going on within the group. You may complete this assignment as
an individual or in teams or two.

Background:
Below is an actual graph of lab reports submitted for Intro. Physics at a large University.
This graph represents the data collected for about 800 lab reports. Each node in the graph
represents some document. Each edge indicates the number of 6-word phrases shared
between the documents it connects. To reduce “noise” a threshold of 200 common
phrases has been set – so a document that shares fewer than 200 6-word phrases with all
other documents is not shown. The “Lab Manual” is a sort of style-guide for the lab
report and the two brown boxes are sample lab reports that were distributed. (Many
people apparently “borrowed liberally” from these help materials). Particularly
suspicious are clusters like the one in the top-right corner: those documents have an
inordinate number of 6-word phrases in common with each other. It is likely that those
people turned in essentially the same lab report or copied large portions from each other.

Baker Franke 2018 2 of 4

Assignment:
Your task is very similar to the one described and shown above: find the common word
sequences among documents in a closed set. Simply put, your input will be a set of
plain-text documents, and a number n; your output will be some representation showing
the number of n-word sequences each document has in common with every other
document in the set.

Finally, you should identify “suspicious” groups of documents that share many common
word-sequences among themselves but not with others.

DETAILS:
 Output:
You can think of processing everything into an NxN matrix (where N is the number of
total documents) with a number in each cell representing the number of “hits” between
any pair of documents.

For example: below is a small table showing the comparisons between 5 documents:

 A B C D E
A - 4 50 700 0
B - - 0 0 5
C - - - 50 0
D - - - - 0
E - - - - -

From this table we can conclude that the writers of documents A, C and D share a high
number of similar 6-word phrases. We can probably say A and D cheated with a high
degree of certainty.

For a large set of documents, you may only want to print a matrix for those documents
with a high number of hits above a certain threshold.

Printing an NxN matrix may be unmanageable for large sets. You could instead produce
a list of documents ordered by number of hits. For example:

700: A, D
50: A, C
50: C, D
5: B, E
4: A, B

You could also produce a graphical representation like the one shown above.

 The documents:
Some sets of documents will be provided. One set will be small (25 or so documents) for
testing purposes. The other sets will be larger (one has 75 documents, the other over

Baker Franke 2018 3 of 4

1300 documents) which you should use to test the scalability of your solution. (The
documents came from www.freeessays.cc, a repository of *really bad* high school and
middle school essays on a variety of topics).

Your program should be able to process all of the documents in a given folder/directory.

 Strategy:
How are you going to do this? Well, it’s up to you. The straightforward matrix solution
(comparing each six-word sequence, say, to all other six-word sequences) gives an O(w2)
solution – where w is the total number of all words in all documents. For a large set of
documents w2 grows very large, very fast. It will work though – it will just take a while.
For perspective, if the 25-document set takes 10 seconds to process this way, the 1300-
document set will take over 6 hours…if you can actually hold the necessary data in
memory which you probably can’t.

There may be a clever way to use a hash table or to leverage some ideas from sorting
algorithms that will, in theory, do better than O(w2). The problem with the hash table
strategy and some sortings is not the time complexity but the space complexity. For a
large number of documents the amount of memory required to compute this is too large
to hold in memory all at one time. If you want this solution to scale to large sets of
documents, you’ll have to do even more clever things, probably by creating your own
supplementary data files that you can store and load on demand.

One way to gain ultimate control over the processing is to write your own specialized
data structures. However, you’re free to use anything in the Java Libraries.

Getting started, Grading, and Milestones:

Milestone I
 You need to be able to process a set of documents in a directory and produce all
possible n-word sequences. You should be able to change n relatively easily. Proof of
this milestone consists of demonstrating you can print all n-word sequences to the
console for a given n.
 Write a program called “cheaters” that will take command line parameters for the
path from the executable program to the text files and n (the length of the word
sequence).

e.g. prompt>java cheaters path/to/text/files 6

Milestone II
 You need to have some sort of model for how you’re going to handle all of the
data you’re going to generate. You can create this separately, and test it with a small set
of data to produce a “proof of concept.”

http://www.freeessays.cc/

Baker Franke 2018 4 of 4

Basically, I need to see some proof of how you are going to compute the similarities
between documents and also how you’re going to locate suspicious cases. I’ll need to
look at what you’ve done and see a demonstration of the basic concepts. Good design
counts for a lot here! Not just for your grade, but for the functionality of the program.

Milestone III

The minimum here is essentially a synthesis of Milestones I and II plus the last step of
identifying the suspicious cases. A nice product would be a simple console application
that accepts 3 command-line arguments. For example:

java cheaters path/to/files 6 200

which would churn and then produce a list (in order) of all the pairs of files in
path/to/docs that shared more than 200 6-word sequences in common.

Your final program should be able to produce meaningful output for at least the small and
medium sets of documents.

Lastly, with Milestone III you will submit a short document (the project README)
about what your program does, how to use it, what works, what doesn’t work and any
other features, bugs I should know about when I’m looking at your code.

Extra Credit: (25 points)

Create a graphical display of the output (similar to the picture in the assignment
document).

What to submit:

1. The package directory ‘assignment7’ and all Java files it contains

*** Zip these two item together and name the zip file ‘Project7_EID.zip’ ***

When unzipped, the folder structure should be:

Project7_EID(folder)
->assignment6(folder)
---> README.txt
--->cheaters.java
--->other.java (whatever classes you create)

	Catching Plagiarists
	Background:
	Assignment:
	Getting started, Grading, and Milestones:

