
3/5/18 1:30 PM 1

EE 422C HW4 1

Critter Simulator (Part 1) 2

 3

125 Points 4

Due: Thursday 3/22/18 at 11:59pm 5

 6

1. Objectives: 7

We have several objectives for this project. 8

� You will work with an inheritance hierarchy that has an abstract base class. The 9

abstract base class will have public, private and protected components, concrete 10

methods and abstract methods, and both static and non-static elements – a little bit 11

of everything. You’ll make concrete subclasses of this class and write “object-ori-12

ented” code that operates on instances of the subclasses in a polymorphic fashion. 13

� We’ll introduce you to the concept of the Model-View-Controller (MVC) soft-14

ware architecture. Our model will be a simple simulation. The controller in part 1 15

will be a text-based controller with very rudimentary commands entered from the 16

keyboard (technically, commands will be read from System.in, which of course 17

may not be a keyboard). The views for part 1 will similarly be very rudimentary 18

and will consist of a text representation of the simulated world sent to System.out. 19

During part 1, most of your effort will go into the model itself (i.e., writing the 20

simulator). In part 2, you’ll build a more interesting and useful view and control-21

ler component. 22

 23

2. Summary: 24

Imagine a 2-D rectangular grid of fixed length and width. Each grid point can be de-25

scribed with a pair of co-ordinates (x, y). Imagine now that some of these grid points are 26

populated by Critters (i.e. animals or Algae plants). As time progresses in steps, the Crit-27

ters can (i) move around the world (ii) fight other Critters when they find themselves on 28

the same grid location (iii) eat Algae (iv) reproduce and (v) die when they run out of en-29

ergy. You will write a simulation model for this world in Java, where we specify the 30

rules for the above five activities. 31

 32

Here is how the simulation model runs: 33

(i) The program is started up through a main() by the user. 34

(ii) The user is provided a prompt where he/she enters text commands. The first com-35

mand might be to add a specified number of Critters of a specific type to the world 36

model. 37

(iii) The user can now (or at any time) use the show command to print a view of the 38

world to the console. 39

(iv) The user can issue the step command to step through time a fixed number of times. 40

The world autonomously evolves as time passes, because of the activities listed in line 41

27. 42

(v) The user can use the quit command to finish the simulation. 43

 44

 45

3/5/18 1:30 PM 2

 46

3. Instructions: 47

You may work in teams of two for this project. Each team should make only one submis-48

sion to Canvas. All of the project source files MUST have the names and UTEIDs of both 49

students in the header at the top of the file. There will be no exceptions to this policy on 50

team projects. Collaborating on the project and failing to follow these instructions and 51

will be treated as a violation of academic honesty. 52

 53

You may form your own team by finding a partner, or you may work on your own. 54

Please see the Canvas assignment page for instructions on how to form your team, and 55

the deadline for doing so. 56

 57

You must write a simulator that supports the functionality for Critter described be-58

low. Your simulator will be controlled with a text-based interface that accepts a few sim-59

ple commands and produces a rudimentary representation of the world. All of your clas-60

ses must be included in a java package called “assignment4”. You must create a class 61

Main inside this package, and the main() function for your simulator (i.e., the control-62

ler) must be inside the Main class. 63

 64

You must complete the Critter abstract class. There are several functions required in 65

Critter – some are static, some are protected and some are private. Please review both 66

the Critter.java file and the description below. You must implement all of the 67

methods defined in this class. You may not delete or change any of the fields or methods 68

already defined for Critter. You may add additional methods or fields to Critter 69

only if you make those new methods or fields private. 70

 71

Note that the Critter class has one inner class called TestCritter. The Test-72

Critter class is used to (1) implement the Algae critter, which is the primary source 73

of food within our simulated world, and (2) to test your projects during grading. You 74

must ensure that the setter functions in the TestCritter class work correctly with 75

your implementation of the Critter class and the simulation that you build. You must also 76

implement the other methods in TestCritter correctly for the grading to work. We 77

might discover more methods that we need for grading, and we will tell you that later. 78

You are free to add any other methods that you like in TestCritter to help your test-79

ing. We will not be calling those methods in our grading, of course, but they should not 80

result in compile errors when we run your code. 81

 82

As you implement the functionality for your Critter model, you may find that you 83

want to create additional classes. All of your classes must be in the assignment4 84

package. You must implement all of the functionality described below. However, we rec-85

ommend that you build this project in stages. Suggestions are provided within the de-86

scriptions below of the form [STAGE 1], [STAGE 2] or [STAGE 3]. You may, of 87

course, implement the functionality in any order that you wish; however, please keep in 88

mind that our grading process will assume that you worked on the stages in order (i.e., 89

that you completed all the STAGE1 functionality before implementing STAGE2). 90

3/5/18 1:30 PM 3

 91

In addition to implementing the model, view, and controller for basic Critters such as 92

Craig and Algae (two critters that are included in your project kit), you must imple-93

ment at least two distinct additional Critter classes per team member (i.e. four for a 94

team of two). Each Critter class must behave differently when modeled. Each Crit-95

ter class must be in its own .java file. At the top of the java file, you must include a par-96

agraph description in the comments that explains how this Critter class behaves in the 97

world. The description should be sufficient for the teaching assistant to easily determine 98

how each Critter class you create is different from every other Critter class. 99

 100

4. Model components: 101

The model consists primarily of the Critter class, and subclasses of Critter. A 102

Critter is a simulated life form that lives in a 2-dimensional world. Critters have 103

(x,y) coordinates in an integer grid to describe their position in the world, and an en-104

ergy value that represents the critter’s relative health. These values are represented with 105

private fields in the Critter class. When a Critter’s energy drops to zero (or be-106

low) the critter dies and is removed from the simulation. You are provided with a Crit-107

ter.java file that describes the minimum required functionality for your Critter. 108

Please refer to the file for details regarding our expectations for your solution. You are 109

also provided with a Craig.java file that implements a subclass of Critter. You 110

should not modify this file. Your implementation of Critter should work with the 111

Craig.java file provided to you. 112

 113

5. Constant List: 114

There are a number of constants defined in the Params class. These constants are 115

static and final variables that identify parameters for the simulation. You must use 116

these parameter variables when implementing the simulation. The parameter values that 117

your program is tested with may be different than the values provided to you. The param-118

eters in this file include: 119

� world_width – horizontal size of the world (integer units), typical values are 120

100-1000. We promise not to use values larger than 105 in our testing. Will never 121

be smaller than 10. 122

� world_height – vertical size of the world. Same range expectations and re-123

strictions as world_width. 124

 125

The coordinates in our world run from 0 (left edge) to world_width – 1 (right 126

edge) in the x dimension and from 0 (top edge) to world_height – 1 (bottom 127

edge) in the y dimension. This coordinate system was chosen to match the way most 128

graphics libraries work. 129

 130

The simulated world is a 2-dimensional projection of a torus. That means that the 131

right-hand edge of the world is considered to be adjacent to the left-hand edge. Or, if 132

you prefer, that the world “wraps around” in both the horizontal and vertical dimen-133

sions. When Critters move, if a Critter moves off the top of the world, you 134

3/5/18 1:30 PM 4

should relocate that Critter to the bottom, and similarly for the four edges of the 135

world. 136

 137

The model understands eight directions – up, down, left, right and the four diagonals. 138

These directions are numbered such that the values roughly approximate the radians 139

around a circle – i.e., as direction increases in value, we move counter-clockwise in 140

angle. The 0 direction is straight right (increasing x, no change in y). The 1 direction 141

is diagonally up and to the right (y will decrease in value, x will increase). The 2 di-142

rection is straight up (decreasing y, no change in x), and so forth. We will not test 143

your program with negative directions or with directions larger than 7. 144

 145

� start_energy – the amount of energy assigned to a Critter when the crit-146

ter is created at the start of the simulation. Note that this value is not the same as 147

the amount of energy a Critter will have when it is “born” as the offspring of an-148

other Critter. See below for details about reproducing Critters during a simu-149

lation run. 150

� walk_energy_cost – the amount of energy required to move one grid posi-151

tion in any one of the eight directions in one time step 152

� run_energy_cost – the amount of energy required to move two grid posi-153

tions in any one of the eight directions in one time step 154

� rest_energy_cost – the amount of energy required per time step in addition 155

to any other energy expended by the Critter in that time step, i.e., the energy spent 156

just standing still. 157

� min_reproduce_energy – the minimum amount of energy that a Critter 158

must have if it will reproduce. See reproduce below. 159

� photosynthesis_energy_amount and refresh_algae_count are 160

specific to the Algae class. See the discussion of Algae below. 161

You may alter this Params class file during your testing, as we will eventually replace it 162

with our own. 163

 164

6. Critter collection: [STAGE1] 165

You must create and maintain a collection (e.g., List, or Set) of Critters. In this 166

collection you should store a reference to all the Critter instances that are currently 167

alive and being simulated. You can store your critter collection as a static data com-168

ponent of the Critter class, or you can create a separate CritterWorld class that 169

stores the critter collection (and perhaps will store other information about the state of the 170

critter environment). Note that it does not make sense within the MVC architecture for 171

the critter collection (which is part of the model) to be stored within the Main class 172

(which is the controller). 173

 174

The controller will populate this collection by invoking the static Critter.make-175

Critter() function. 176

� public static void makeCritter(String critter_class) – 177

create and initialize a Critter and install the critter into the collection and prepare 178

the critter for simulation. The critter’s initial position must be uniformly random 179

3/5/18 1:30 PM 5

within the world, and the initial energy must be set to the value of the 180

Params.start_energy constant. 181

If the random location selected for the critter is already occupied, the critter 182

should be placed into that position anyway. The encounter between the two crit-183

ters now located in the same position will be resolved in the next time step (pro-184

vided both critters are still in the same position at the end of that time step, see be-185

low). 186

The type of critter is given by the argument critter_class. If crit-187

ter_class does not exist or if critter_class is not a concrete subclass of 188

Critter, then this function must throw an “InvalidCritterException”. 189

To implement this function you will need to use the Class.forName() static 190

method and the newInstance non-static method for the class Class. 191

 192

7. Time Steps: [STAGE1 except as noted below] 193

Our simulation consists of a sequence of time steps. During each time step, the state of all 194

Critters in the simulation is updated, new critters may be added, and critters may be 195

removed (births and deaths). All of the core functionality of the simulator is associated 196

with time steps. The Critter class has two methods for handling time steps. The public 197

static worldTimeStep function simulates one time step for every Critter in the 198

critter collection (i.e., for the entire world). The abstract doTimeStep function simu-199

lates the actions taken (if any) by a single critter as it goes about its life in the simulation. 200

Note that subclasses of Critter will override the doTimeStep function so that each type 201

of critter can behave in different ways (some will walk, some will run, some will stand 202

still, etc). 203

 204

During a worldTimeStep you must accomplish all of the following tasks: 205

 206

� Invoke the doTimeStep method on every living critter in the critter collection. 207

The phrase “living” critter is used here for completeness. Hopefully all the dead 208

critters are removed from your collection when they die. 209

� Some critters will implement their doTimeStep function by (in addition to 210

other actions) walking or running. All of these critters must be moved to a new 211

position (see the description of the walk and run methods below). Once all critters 212

have moved in the time step, if two or more critters are occupying the same (x,y) 213

coordinates in the world (i.e., are in the same position) you must resolve the en-214

counter between that pair of critters. At the end of that resolution, only one critter 215

will be permitted in any position. See encounter resolution below. If more than 216

two critters are in the same position, then you must resolve the encounters pair-217

wise, but you may do so in an arbitrary sequence. For example, if A, B and C are 218

all critters in the same position, then you may first resolve the encounter between 219

A and B. If B remains alive and in the same position, then you may then resolve 220

the encounter between B and C (and so on, if there are more than three critters). 221

� [STAGE 2] Some critters will implement their doTimeStep function by (in ad-222

dition to other actions) spawning offspring (i.e., calling the reproduce method, de-223

scribed below). Once all critters have had their doTimeStep function called, 224

3/5/18 1:30 PM 6

their movements applied, and all encounters resolved, then all new Critters 225

are added to the critter collection. Note that if a new critter is located in the same 226

position as an existing critter, you will not simulate an encounter. Any encounter 227

will take place in the next time step (assuming the two critters remain in the same 228

position). 229

� Once all of the critters have been updated, with their doTimeStep functions in-230

voked, their movement and encounters resolved and any offspring created, you 231

must cull the dead critters from the critter collection. Any critter whose energy 232

has dropped to zero or below during this time step is dead and should no longer be 233

part of the critter collection. Don’t forget to apply the Params.rest_en-234

ergy_cost to all critters before deciding if they are dead. 235

 236

8. Walking and Running Critters: [run is a STAGE2 function, walk is STAGE1 237

During each time step, a critter may choose to invoke the walk or run function. These 238

functions are nearly identical, with the only difference being that walk will move a critter 239

one position in one of the eight directions, while run will move a critter two positions in 240

the specified direction. Note that while running, the critter must move in a straight line 241

(no zig-zags). Note also that a running critter will probably be charged more than twice as 242

much energy as a walking critter. The walk method must deduct Params.walk_en-243

ergy_cost from the critter that invokes it, and the run method must deduce 244

Params.run_energy_cost from the critter that invokes it. Since these methods are 245

so similar, you might want to minimize your code by sharing stuff between these two. 246

There will also be look functions added later that can further reuse your code. 247

 248

There are two critter methods that can call the walk and run methods. Most critters will 249

invoke the movement method directly from their doTimeStep function (the Craig 250

critter has this implementation). When invoked from this method, you must update the 251

energy for the Critter and calculate its new position. Recall that you will not check 252

for encounters until after all critters have moved. That means that two critters may tem-253

porarily be located in the same position (Critter A moves on top of Critter B, but 254

then Critter B moves out of that position during the same time step) and/or that two 255

critters may move “through” each other (Critter A is directly to the left of Critter 256

B, Critter A moves one position to the right, Critter B moves one position to the 257

left). In neither of these situations will you simulate an encounter. 258

 259

[STAGE 3] Note that critters cannot move twice from within the same doTimeStep 260

function. If a Critter subclass calls walk and/or run two (or more) times within a sin-261

gle time step, you must deduct the appropriate energy cost from the critter for walk-262

ing/running, but you must not actually alter the critter’s position. Critters can die in 263

this fashion. 264

 265

[STAGE 3] Critters may also invoke walk or run from the fight() method. 266

You will call fight when you are resolving an encounter (see below). A critter that 267

does not want to fight can attempt to walk (or run) away. If a critter invokes walk or run 268

from inside its fight method, you must charge the appropriate energy cost (whether 269

3/5/18 1:30 PM 7

you permit the critter to move or not). Then you will move the critter only if both of the 270

following conditions apply. 271

1. The critter must not have attempted to move yet this time step. If the critter has 272

previously invoked either its walk or run method this time step, then it will not 273

move in fight (you’ll still penalize the critter with the movement cost, however). 274

2. The critter must not be moving into a position that is occupied by another critter. 275

Only if both of those conditions apply will you move the critter. In this case, the encoun-276

ter is resolved and no fight will take place between the critters in the encounter (see be-277

low). Note that if both critters attempt to move while resolving the encounter, and both 278

critters attempt to move into the same position, you should move only one of the two crit-279

ters (you can arbitrarily move one, “first” and then the second critter will not be able to 280

move since that position is occupied). 281

 282

9. Encounters Between Critters: [STAGE 2] 283

When two critters occupy the same position, an encounter must take place. Once all en-284

counters are resolved, only a single critter can remain in any one position in the simula-285

tion world. Recall that your simulator must detect and resolve encounters only after every 286

critter has had its doTimeStep method invoked (i.e., after every critter has had the op-287

portunity to move). When you are resolving an encounter between critters A and B, you 288

should proceed as follows: 289

1. Invoke the A.fight(B.toString()) method to determine how A wants to 290

respond. Note that A may try to run away. Note that A may die trying to run away 291

(if it’s very low on energy). If the fight method returns true, then A wishes to at-292

tempt to kill B. 293

2. Invoke the B.fight(A.toString()) method to determine how B wants to 294

respond. B may also try to run away. B may also die trying (both objects could 295

die!). If fight returns true then B wishes to attempt to kill B. 296

3. After both fight methods have been invoked, if A and B are both still alive, and 297

both still in the same position, then you must generate two random numbers (dice 298

rolls, see below). 299

a. If A elected to fight, then A rolls a number between 0 and A.energy. If 300

A did not decide to fight, then A rolls 0 301

b. If B elected to fight, then B rolls a number between 0 and B.energy. If 302

B did not decide to fight, then B rolls 0 303

The critter that rolls the higher number wins and survives the encounter. If 304

both critters roll the same number, then arbitrarily select a winner (e.g., A 305

wins). 306

4. If a critter loses a fight, then ½ of that loser’s energy is awarded to the winner of 307

the fight. The loser is dead and must be removed from the critter collection before 308

the end of this world time step. 309

 310

[STAGE 3] Recall that if there are three or more critters in the same position, then the 311

encounters are resolved in an arbitrary sequence. If while resolving the encounter be-312

tween A and B, both critters die or move out of the position, then you must not simulate 313

an encounter between A or B and any other critters in that position. For example, if A, B 314

and C are in the same position, and you simulate the encounter between A and B, and 315

3/5/18 1:30 PM 8

both critters run away and move into new positions, then C will not encounter anything 316

this time step. On the other hand, if A and B fight, and B wins (and gains energy from A), 317

then C will encounter (the newly strengthened) B critter. 318

 319

10. Rolling Dice: 320

Critter provides a static function for generating uniformly-distributed random integers 321

within a specified range. The name of this function is Critter.getRandomInt and 322

you must use this function for generating any random numbers used in your simulation. 323

This rule applies to subclasses of Critter as well. For example, Craig calls Crit-324

ter.getRandomInt as part of its doTimeStep function. Generating random num-325

bers using any other method is disallowed for this project (We're worried that you might 326

have trouble making your simulation repeatable if we don’t constrain how random num-327

bers are produced, so we're putting this restriction in the hopes that it will make your 328

lives easier in the long run). 329

 330

11. Reproducing Critters: [STAGE 2] 331

Concrete subclasses of Critter may invoke the reproduce function. They can call 332

this function from either their doTimeStep function or from their fight function. In or-333

der to call reproduce, the critter must first create a new Critter object (a new instance 334

of a concrete subclass of Critter) and pass a reference to this object to the reproduce 335

method. When that happens you must: 336

� Confirm that the “parent” critter has energy at least as large as 337

Params.min_reproduce_energy. If not, then your reproduce function 338

should return immediately. Naturally, the parent must not be dead (e.g., did not 339

lose a fight in the previous time step), but you should have removed any such crit-340

ters from the critter collection and/or set their energy to zero anyway. 341

� Assign the child energy equal to ½ of the parent’s energy (rounding fractions 342

down). Reassign the parent so that it has ½ of its energy (rounding fraction up). 343

� Assign the child a position indicated by the parent’s current position and the spec-344

ified direction. The child will always be created in a position immediately adja-345

cent to the parent. If that position is occupied, put the child there anyway. The 346

child will not “encounter” any other critters this time step. 347

New “child” critters created during a time step are not added to the critter collection until 348

the end of the time step. They cannot prevent critter from walking (e.g., a critter wants to 349

walk away from an encounter, that critter cannot move into a position that’s already oc-350

cupied by regular critter, but can move into a position occupied by a “newborn” critter), 351

and the new children cannot encounter any other critters this time step. All new children 352

will begin their existence within the simulated world in the next world time step. Note 353

that the parent’s reduction in energy happens immediately, however. 354

 355

12. The Algae and TestCritter Subclasses:[STAGE 2] 356

Algae is a special critter type that can “cheat” – it can photosynthesize and is permitted 357

to spontaneously appear within the simulated world. Essentially, Algae acts as the food 358

supply for the other critters in the simulation. The Algae class is partially implemented 359

3/5/18 1:30 PM 9

for you. The current implementation is based on the inner class Critter.TestCrit-360

ter which has three “setter” methods defined. As you implement your Critter class, 361

you must ensure that these setter methods continue to work. For example, if you create an 362

external data structure to represent the world “grid” (e.g., a two-dimensional array of 363

Critters), then the setX_coord and setY_coord functions must update that ex-364

ternal data structure correctly. Also, if the setEnergy setter is used to make the crit-365

ter’s energy go to zero (or become negative), then you must “kill” the critter and remove 366

it from the critter collection. 367

 368

New Algae must be added to the world every time step. At the end of the time step, af-369

ter all other activity has been simulated (all movements and encounters), use a loop to 370

create Params.refresh_algae_count new Algae. Each new Algae will have 371

Params.start_energy energy and will be assigned a random position. If the Al-372

gae’s random position places the Algae in the same location as another critter, that is 373

OK. Newly created critters can be “on top of” other critters in the time step where they 374

are created, by the end of the next time step, however, the critters must move apart, or 375

they must fight (even Algae will fight if placed into the same location). 376

 377

 378

13. View Component: [STAGE 1] 379

The view (and controller) for this phase of the project is extremely rudimentary. We 380

won’t even bother pulling the “view” from the Critter class. Instead, your view con-381

sists of implementing the public static displayWorld method. This function must 382

print a 2D grid to System.out. Each row in this grid represents one horizontal row in 383

the simulated world. Thus, there will be world_height such rows. Each row will have 384

world_width characters printed in it. If a position in the world is occupied then you 385

will print the toString() result for that critter in the corresponding row/column in 386

your output. If a position is not occupied, then you’ll print a single space. 387

 388

You must also print a border around your text representation of the world. You must start 389

and end each row with a vertical bar “|” character, and you must include a row of dash “-“ 390

characters at the top and at the bottom of your diagram. Finally, the corners of your dia-391

gram must have “+” characters. So, a small 5x5 world might look like this: 392

 393

+-----+ 394

| @ C| 395

| | 396

| @ | 397

| @ | 398

|C @ | 399

+-----+ 400

 401

Note that this world has 4 Algae critters and two Craig critters. Yeah, it’s pretty lame, 402

but we’ll look into building better graphics in phase 2 of the project. 403

 404

3/5/18 1:30 PM 10

14. Controller Component: 405

The controller for this phase is almost as rudimentary as the view, and is entirely text 406

based. You must use a Scanner object created in main() for reading from the keyboard. 407

Only one Scanner object connected to the keyboard may be created in the whole pro-408

gram. The controller must provide the end user with a prompt, “critters> “. In re-409

sponse to this prompt, the controller will accept a line of input (tabs and spaces do not 410

matter, but newline characters do, a newline marks the end of line). The following com-411

mands are supported. All commands are case sensitive. 412

� quit – [STAGE 1] terminates the program 413

� show – [STAGE1] invoke the Critter.displayWorld() method 414

� step [<count>] – [STAGE1] The <count> is optional (count is [STAGE2]). If 415

<count> is included, then <count> will be an integer. There are no square brackets 416

in this command, this notation is used simply to indicate that the <count> is op-417

tional. For example, “step 10000” is a legal command, as is “step”. In response to 418

this command, the program must perform the specified number of world time 419

steps. If no count is provided, then only one world time step is performed. 420

� seed <number> -- [STAGE2] invoke the Critter.setSeed method using 421

the number provided as the new random number seed. This method is provided so 422

that you can force your simulation to repeat the same sequence of random num-423

bers during testing. 424

� make <class_name> [<count>] – [STAGE3, for stages 1 and 2, edit your 425

main function so that 100 Algae and 25 Craig critters are always placed 426

into the world when it starts, for STAGE3, the world should start empty] as 427

before, the <count> argument is optional. The command “make” must be pro-428

vided verbatim. The <class_name> argument will be a string and must be the 429

name of a concrete subclass of Critter. When this command is executed, the con-430

troller will invoke the Critter.makeCritter static method. The 431

<class_name> string will be provided as an argument to makeCritter. If no 432

count is provided, then makeCritter will be called exactly once. If a count is 433

provided, then makeCritter will be called inside a loop the specified number 434

of times. For example “make Craig 25” will cause Critter.makeCrit-435

ter(“Craig”); to be invoked 25 times. 436

� Note: The String passed in to the command and to MakeCritter is 437

the unqualified name of the Critter. Our starter code extracts the pack-438

age name, and you should prepend it to the class name as necessary. 439

 440

� stats <class_name> -- [STAGE3] Similar to make, <class_name> must be a 441

string and will be the name of a concrete subclass of Critter. In response to this 442

command, the controller will 443

1. Invoke the Critter.getInstances(<class_name>) which must 444

return a java.util.List<Critter> of all the instances of the spec-445

ified class (including instances of subclasses) currently in the critter col-446

lection – you must write Crittter.getInstances, by the way, we 447

didn’t provide that for you. 448

3/5/18 1:30 PM 11

2. Invoke the static runStats() method for the specified class. For exam-449

ple, if <class_name> were Craig, then your controller will invoke 450

Craig.runStats() and will invoke this function with a list of all of 451

the Craig critters currently in the critter list. See the note about convert-452

ing unqualified names to qualified. 453

 454

After processing the command, prompt the user for the next command. Naturally, if the 455

command is “quit”, then the program simply exits. 456

 457

15. Exceptions and Errors: [STAGE3] 458

If any exception occurs for any reason while parsing or executing a command, your con-459

troller must print one of the following error messages and continue executing. 460

� If a command is entered which does not match the list of commands above, then 461

your program must print: “invalid command: “ and then print the line of text en-462

tered. For example, if I entered the command “exit now”, which is not a valid 463

command, your controller must print the error “invalid command: exit now” on a 464

single line. 465

� If an exception occurs during the execution of a command (e.g., InvalidCrit-466

terException, or an exception while parsing an integer), then your program 467

must print, “error processing: “ and then print the line of text entered. For exam-468

ple, if the command, “make Craig 10-“ would result in a parsing exception 469

because of the malformed 10- and must produce the output, “error pro-470

cessing: make Craig 10-“ 471

� Note that any extraneous text or parsing error on the command line is treated as if 472

an exception occurred (whether one actually occurred or not). So, you treat 473

“make Craig blah” the same way you treat 474

“make Craig 10 blah” 475

 476

16. Code Style: 477

You should have Javadoc style comments for all public, protected, and private methods 478

in your code that you have written or modified. There is no need to add Javadoc com-479

ments to methods that already have such comments. Use good style, and provide com-480

ments, braces, blank lines, and good variable names throughout your code. 481

Convert your comments to Javadoc html files (see Eclipse documentation), and submit 482

these HTML files in a docs folder along with the rest of your submission. We want sin-483

gle page html files for each class – if that is not possible, contact us. In any case, this 484

part's format is somewhat flexible, as we will be grading these by eye. Don't convert the 485

html files to PDF before submission. 486

 487

17. Grading: 488

We will be using a combination of JUNIT testing and running your main for grading. We 489

will also be inspecting your code by eye. We will be using a Linux server for our scripts, 490

but might switch to Eclipse, particularly in case of problems encountered with Linux. It 491

is your responsibility to see that your code works in both environments. We will explain 492

later how to run our JUNIT tests on the Linux server environment. 493

3/5/18 1:30 PM 12

 494

18. Presubmission Testing: 495

We have provided two test case files. Please follow the instructions on how to download 496

them to Eclipse and run them. 497

 498

19. Submission: 499

• Check in your files regularly into Git. We expect at least 4 substantial check-ins 500

from each team member. 501

• Each team should also provide a document team_plan.pdf describing the 502

work done by each of you. This document must include your Git repository URL. 503

Use the starter files provided on Canvas. 504

• Each team should also provide a README.pdf document describing your code 505

structure. 506

o Did you create any new classes, and if so, what fields and methods are in 507

it? 508

o What is the data structure that you used to hold your Critters? 509

o Be prepared to have a paper copy of this document during the recitation 510

section of the week the assignment is due. 511

• Name your critter source files Critter1.java, Critter2.java etc., and 512

include header comments with descriptions. Your toString() for these crit-513

ters should be 1, 2 etc. I know this is not imaginative, but we need it for our 514

grader. 515

• Before submission, make sure that your main is cleaned up, so that it produces no 516

output to the console, and the Critter world is empty. 517

• Do not submit MyCritter1.java, MyCritter6.java etc. that we sup-518

ply to you. 519

 520

Before the deadline, one of you should submit a zip file with all your solution files. This 521

file should contain Critter.java, Main.java, your own Critters, and any 522

other files you created. Zip your source folder and other files together, and rename this 523

file (maybe initially called Archive.zip) Project4_EID1_EID2.zip. Omit 524

_EID2 if you are working alone. 525

 526

3/5/18 1:30 PM 13

To make the zip file, make a folder named Project4_EID1_EID2. Put the files in 527

there as per the diagram below. The invoke the Linux/MacOS command (or do the equiv-528

alent in Windows): 529

zip –r Project4_EID1_EID2.zip Project4_EID1_EID2 530

 531

Just to be sure, move your zip file to a different location and unzip it. 532

Make sure that the structure of the final ZIP file is as follows, when unzipped: 533

 Project4_EID1_EID2/ (folder that is created by zip) 534
 README.pdf 535
 team_plan.pdf 536
 <other non-code files> 537
 docs/ 538
 src/ 539
 assignment4/ 540
 Main.java 541
 Critter.java 542
 Critter1.java 543
 Critter2.java 544
 ... 545

Good luck and have fun! 546

 547

20. FAQ: 548

See the separate document on Canvas. 549

 550

21. Before submission checklist: 551

 Did you complete a header for *all* your files, with both your names and UT 552

EID's? 553

 Did you do all the work by yourself or with your partner? 554

 Did you zip all your new or changed files into a zip file? Did you remember not 555

to include the unchanged files that we provided? 556

 Did you remove or comment out all the features that you added for testing that vi-557

olate the rules of submission? 558

 Did you include your own Critters, after testing them in your system? 559

 Did you download your zipped file into a fresh folder, move it to the Linux 560

server, make sure that your directory structure is exactly what we asked for, and 561

run it again to make sure everything is working? This is not optional. 562

 Does your code work correctly on Eclipse with Java 8 as well as on the ECE 563

Linux server? 564

 Is your package statement correct in all the files? 565

 Did you preserve the directory structure? 566

 Did you include a PDF document describing what each of you did on this project? 567

 Did you include a PDF document with your code structure? 568

 Did you include Javadoc files? 569

