
3/21/18 5:21 PM 1

EE 422C HW 5
Critter Simulator (Part 2)

125 Points
Due: Thursday 4/5/18 at 11:59pm

This project is optionally a pair-programming project.

Here you’ll add a more modern controller and view module based on the JavaFX
framework to your Critter simulation engine. We’ll make the critter model a little more
interesting (just a little) so that Critter subclasses can be more interesting; if time permits,
we’ll let you show the class your fancy GUI (just for fun and bragging rights).

A large part of your grade will be based on the visual presentation of your JavaFX-based
interface. Also note that we will not be imposing specific requirements on how you
implement your interface. Rather, the TA will be working off a checklist of required
features and will score your project partly on whether you can accomplish everything on
that list (in some fashion, we won’t tell you what to do), and how attractive and effective
(i.e. easy to use) your interface is.

Model components
The model remains largely unchanged for this project. Given that the model was the
dominant focus of the last project, that seems reasonable. However, you do need to
introduce one new piece of functionality. You must implement the protected
Critter.look(int direction, boolean steps) method. This method
examines the location identified by the critter’s current coordinates and moving one or two
positions (for steps = false or true respectively) in the indicated direction (recall
direction 0 corresponds to moving along the x axis, 1 corresponds to moving diagonally
along both the x and y axes, etc. (refer to Part 1 for documentation)). If the location is
unoccupied, then look returns null. If the location is occupied, then look returns the
toString() result for the Critter in that location. In either case, the critter invoking
look will pay the Params.look_energy_cost energy cost.

When implementing look you must respect the simulation rule that all critters move
simultaneously during their doTimeStep. So, if a critter invokes look during
doTimeStep, then the result of calling look is based on the old position of the critter
(before it moved this time step, if it has) and based on the old positions of all the other
critters (before they move this time step).

Conversely (and consistent with Part 1), if a critter invokes look during its fight
method, then the result of calling look is based on the most current up-to-date
information. Any walk/run effect is processed immediately in the arbitrary order that you
process them (any sequence of fight() actions is fine – this is the same requirement as
Part 1). A critter can look as often as it wishes in a time step.

3/21/18 5:21 PM 2

One source of confusion might be to decide when to remove dead critters from their
location. Remove dead critters that have died during doTimeStep after doTimeStep. After
fighting, remove dead critters right away. If there are some corner cases for these rules,
implement anything reasonable, and document your behavior in your README file.

View Component
The view component is completely rewritten for this project, and you may design this
component (almost) anyway you wish. These are the requirements (checklist items)

� The view component must be triggered by the Critter.displayWorld static
method.

� The view component must display critters graphically using a JavaFX Canvas
object. Other types of JavaFX objects are also acceptable. For this purpose, you
may access objects in your Main class statically.

� The Canvas view object can be scaled however you see fit. The quality and
flexibility of your scaling will be rated by the TAs. A well-scaled view will permit
large critter worlds (Params.world_width and Params.world_height
larger than 100) to be displayed on reasonable sized screens (i.e., laptop computer
screens).

� Each critter in the simulation can select how it is viewed by overriding the
following methods

o viewShape() – returns a CritterShape value, see the
Critter.CritterShape enumeration for possible values

o viewOutlineColor() – returns a JavaFX Color value (see the
JavaFX canvas tutorial for demonstrations of possible colors)

o viewFillColor() – returns a JavaFX Color value
The view method must correctly draw each critter based on these values, the
shape must be outlined using the outline color and the shape must be filled using
the fill color. Note that by default, the two colors are the same.

� In addition to rating your view based on the quality of its scaling implementation,
the TAs will give an overall “attractiveness and quality” rating as part of your score.

Controller Component
The controller will also be largely rewritten; however, you may be able to salvage and reuse
parts of your controller. The controller commands themselves will remain the same. Your
controller must be a JavaFX graphical user interface rather than a text based interface.
Users will enter commands by pushing buttons rather than typing text. When evaluating
your controller, the TAs will look for the following.

� Do you have the ability for the end user to create Critters? Can the user add
new critters to the simulation at any time (i.e., making new critters should not be
limited to before the first time step – if you implement animation, you can and
should disable critter creation while animation is running, see below). You must
not pre-program the acceptable Critter types.

� Do you have the ability for the user to perform time steps? Can the user perform
multiple time steps with a single button push? Is the view updated correctly after

3/21/18 5:21 PM 3

performing time steps – note that if the user asks to perform 100 time steps, then
the view should be updated only after all 100 time steps have completed, not
updated after each time step. Users should be able to (with one click) step the
simulation by 1 time step, or by 100 time steps, or by 1000 time steps (configured
and selected by the user). If the user can select other values for the number of time
steps, that’s even better.

� Do you have the ability for the user to invoke their runStats method? Do you
have a panel where the results of runStats is continuously being displayed
(updated whenever the view is updated)? Can the user select which critter class(es)
have their runStats methods updated? You may simply display all the critters'
stats all the time, for a small point penalty. By default (if the particular critter has
no runStats defined) is the Critter.runStats base class method invoked
each time the view is updated?

� Do you have the ability for the user to set the random variable seed?
� For all of the above items, the less typing the user has to do to activate the required

functionality the better.
� Is there an easy and obvious way to terminate the program (this requirement is

probably trivial with a JavaFX GUI, but a quit button is a nice touch). For this
assignment, you may use System.exit(0).

� Finally, Is the controller properly separated from the model? You should still use
the same Critter functions as before (doWorldTimeStep, makeCritter,
runStats, etc). Recall that in the MVC architecture, we really want to keep each
component as well separated as practical.

Critter Subclasses
You must also update your critter subclasses so that at least one critter class that you write
invokes the look method. You don’t have to invoke the look method in any particular
way (you can call it from your doTimeStep or from your fight method), and you don’t
have to invoke the look method every time that method is called, but there must be some
circumstances under which your critter uses the look method.

Project teams of two developers (i.e., working with a partner) must update two critter
classes so that one critter class calls look from fight and will not call look from inside
its doTimeStep function, and one critter class calls look from its doTimeStep
function but will not call look from inside fight.

All critter subclasses that you write must override the newly required viewShape method
and override one or more of the viewColor, viewOutlineColor and
viewFillColor methods (you don’t have to override all three). You may not use
external image files to make icons for your critters.

Your solution should be able to add unknown Critter files found in the same directory
(which will also happen to be in the same package). This can be done in one of two ways
– the user has to type in a valid Critter's name into a text box, or you have to search
for and find all valid Critter classes in the same directory and package as Main, and

3/21/18 5:21 PM 4

then display these as choices in a pull-down menu. There should of course be a separate
text box for the number of these Critters that you want to add. The pull-down menu is
harder to implement, but obviously more elegant. You may not hard-code Critter names
into your .java file.

Animation
The simulation is well suited for animation. First, allow the end-user to select an animation
speed. In each animation “frame”, the world could perform 1 time step by default. If the
user increased the animation speed, the world could perform 2, 5, 10, 20, 50 or 100 time
steps per frame (you can pick your own options if you’d like, these “speedup factors” are
just to give you some ideas). Another animation option is to keep the 1 time-step/frame,
but speed up the rate of refresh of the view window.

Once the user has set their animation speed, the user should be able to start animating by
pushing a button. Pushing this button should disable all other controls in your controller
except the “stop animation” button. While the animation is running, the controller invokes
the requested number of time steps each animation frame, then calls the view to update the
graphical Canvas for the world, and also calls the selected runStats method to display
the currently selected stats. The simulation continues repeating this behavior every
animation frame until the stop button is pressed.

Changes to displayWorld and runStats

For this assignment, runStats returns a String, and is not a void method.
You may change your displayWorld to accept an Object as a parameter. The parameter
can be the pane (such as a GridPane object) on which you draw your world. You can
cast the Object parameter to the correct type within your new displayWorld method.

Submission and grading

• Turn in all the files that are required to test your project. Turn in your Params.java,
but do not add or remove parameters from it.

• Submit a README.pdf file with the following:
o A description of your code and graphics, and it might include diagrams.
o Any feature in your project implementation that you think is usually good,

or did not meet the standard. Briefly describe any problem that you had and
could not solve.

• Submit a team plan with each of your roles, and your Git URL, if you worked as a
team.

• For grading, each team will sit with the TA and demonstrate your code. For this
purpose, the code that you turn in will be downloaded into the TA's computer; it
will not be graded on your own machine. Both students have to be present for the
checkout.

• Before the deadline, one of you should submit a zip file with all your solution
files. This file should contain Critter.java, Main.java, your own
Critters, and any other files you created. Do not submit Params.java. Zip
your source folder and other files together, and rename this file (maybe initially

3/21/18 5:21 PM 5

called Archive.zip) Project5_eid1_eid2.zip (.gzip of .gz are also
ok). Omit _EID2 if you are working alone.

To make the zip file, make a folder named Project5_eid1_eid2. Put the files
in there as per the diagram below. The invoke the Linux/MacOS command (or do the
equivalent in Windows):
zip –r Project5_eid1_eid2.zip Project5_eid1_eid2

Just to be sure, move your zip file to a different location and unzip it.
Make sure that the structure of the final ZIP file is as follows, when unzipped:

 Project5_eid1_eid2/ (folder that is created by zip)
 README.pdf
 team_plan.pdf
 <other non-code files>
 src/
 assignment4/
 Main.java
 Critter.java
 Critter1.java
 Critter2.java
 ...

FAQ

Q1. Are we allowed to use SceneBuilder/Swing?
Swing is not allowed because it’s an entirely different framework form JavaFX.
SceneBuilder is allowed because it is just a tool for JavaFX

Q2: How can we find all the Critter subclasses at run-time?
Since the JVM only loads classes as they are needed, the only way to do this is to look at
the files inside the working directory, isolate the .class files, and then isolate the classes
that are critters. This has to be done manually. That is, there is no preexisting java method
that does this for you. Use the instance method list() in the File class to get a list of all files
in a directory, then use the instance method isAssignableFrom() in the Class class to check
if the found classes are Critters.

Q3: How are we supposed to implement the other CritterShapes?
JavaFX by default only has shapes for circles and rectangles. You have to manually
implement the other shapes using Polygon. You have to implement all of them even if your
Critters only use one or two of them.

Q4: How can we implement animation without everything breaking?
Using timers and schedulers will probably cause instabilities because they will be on a
separate thread from your main GUI, which will be on the JavaFX thread. To avoid such
instabilities, use an AnimationTimer. For even finer control over your animations, extend

3/21/18 5:21 PM 6

AnimationTimer and override the handle() method with your own implementation. This is
one of the hardest parts of the assignment.

Q5: How can we output text to the GUI instead of the console?
You can redirect your outputs to any source using the System.setOut(<source>) method.
The easiest way would be to redirect it to a PrintStream made of a ByteArrayOutputStream.
Remember to manually refresh the part of the GUI that is displaying the text.

Q6: What does scaling mean? Scaling of the windows or scaling of the critter world?
The latter. The size of the window is of little issue, and it can be fixed as long as it works
on most reasonable resolutions. The critter world however, should be scalable. For example
your program should be able to handle worlds as small as 4x4 and worlds as large as
100x100 equally well. For full credit, your Critters should be visible as reasonably sized
for different world grid parameters (such as 4x4 and 100x100). For an even better GUI
and extra credit, make your grid dynamically scalable with click-and-drag window resizing
resulting in resizing of the Critters and their grid.

Q7: Must both partners be present for grading?
Yes.

Before submission checklist:
 Did you complete a header for *all* your files, with both your names and UT

EID's?
 Did you do all the work by yourself or with your partner?
 Did you zip all the files required to test your project into a zip file?
 Did you include your own Critters, after testing them in your system?
 Did you download your zipped file into a fresh folder, make sure that your

directory structure is exactly what we asked for, and run it again to make sure
everything is working?

 Is your package statement correct in all the files?
 Did you preserve the directory structure?
 Did you include a README.PDF document and a team plan pdf?
 Did you go through this document and the Piazza posts (especially the faq tagged

posts) just before submission?

Good luck and have fun!

