
12/6/17 1

EE 422C

Assignment 1

Arrays and Sorting

Due Tuesday 1/30/2018 at 10:00pm

75 points

For this project, you will write a few functions that create and manipulate sorted
arrays of integers. This is an individual assignment.

You will be provided with a “test program” with a couple of simple test cases.
Part of this assignment is to reasonably interpret/understand the specification, as
well as designing and validating a solution.

For this particular assignment, you may post ideas about testing to Piazza, in as
much detail as you wish. Do not post test case code, and do not post solution
code (except a line, perhaps, to ask about syntax, for example). Your test case
ideas should not hint at the solution algorithm.

Instructions:
Design, implement and validate a Java class called SortTools that has public
static methods for each of the following functions. You may not use the static
methods in java.util.Arrays or Java Collections in your solution, except, if you
want, Arrays.copyOf and Arrays.copyOfRange. (Both these copy methods
are not essential for the solution.) In all the cases below, there will be no
illegal inputs (you can assume all the parameters that are passed to the
methods are valid). For example, n will be >= 0 and n <= nums.length.

 boolean isSorted(int[] nums, int n)

Returns true if the first n elements of nums are sorted in non-decreasing
order, returns false otherwise. The contents of nums are not modified by
this function.

o The worst case time complexity of this function should be O(n).

o Precondition: n <= nums.length, n >= 0.

o If nums.length = 0 or n = 0, return false.

o Precondition: nums will not be null.

 int find(int[] nums, int n, int v)

If v is contained within the first n elements of nums, return an index of v
(i.e. return k where nums[k] == v and k < n – if there are multiple such
values for k, then your function must return one of those values, but
may return any k < n where nums[k] == v). If v is not contained within
the first n elements of nums return -1. The contents of nums are not

12/6/17 2

modified by this function.
o Precondition: nums must be sorted in non-decreasing order. If

this precondition is not satisfied, then the result of calling find is
undefined and may produce catastrophic behavior.

o Precondition: nums will not be null.
o Precondition: n <= nums.length, n > 0.
o The worst case time complexity of find should be O(log n)

 int[] insertGeneral(int[] nums, int n, int v)

 Return a newly created array of integers with the following properties.

o The contents of the new array include the first n elements of
nums and the value v.

o The contents of the new array are sorted in non-decreasing
order.

o If the first n elements of nums contain at least one copy of the
value v, then the new array will contain n values (i.e. do not add
another copy of v if it is already in nums).

o If the first n elements of nums do not contain v then the new
array will contain n+1

values (i.e. the original contents plus v).
o Precondition: nums must be sorted in non-decreasing order.

If this precondition is not satisfied, then the result of calling this
function is undefined and may produce catastrophic behavior.

o Precondition: n <= nums.length, and n >= 0.
o Precondition: nums != null.
o Precondition:nums.length > 0.

o The worst case time complexity should be O(n).

 int insertInPlace(int[] nums, int n, int v)

Modify nums so that it satisfies the following properties:
o If nums contained at least one copy of the value v within the first

n elements (array elements nums[0..n-1]) prior to executing the
function, then nums is not modified, and n is returned by the
function.

o Otherwise the modified array will contain the first n values from
the original array and the value v. These n+1 values are sorted
in non-decreasing order and stored in array elements
nums[0..n]. The function returns n+1. The remaining elements
of nums (i.e. the elements after index n) are “don’t care”.

o Precondition: nums.length is at least n + 1. If this
precondition is not satisfied, then the result of calling this
function is undefined and may produce catastrophic behavior.

o Precondition: nums must be sorted in non-decreasing order.
If this precondition is not satisfied, then the result of calling this
function is undefined and may produce catastrophic behavior.

o Precondition: n > 0. n < nums.length.Precondition:
nums.length > 0.

o The worst case time complexity should be O(n).

12/6/17 3

 void insertSort(int[] nums, int n)

Sort the first n elements of nums in non- decreasing order. You
must obtain the following time complexity bounds:

o In the general case, your function must have O(n2) time
complexity (i.e. scale no worse than quadratically in n).

o In the special case that nums is nearly sorted, your function
must have O(n) time complexity. The formal definition of nearly
sorted is: nums[k] ≤ nums[k+1] for all 0 ≤ k < n, except for at
most C values of k (where C is a constant).

o Informally, your function must have linear time complexity if all
the elements in nums are sorted with just one value out of
place.

o You have choices of algorithm based on the above criteria
alone, but we want you to implement insertion sort.

o Precondition: nums.length > 0, n > 0, n <= nums.length.
o Precondition: nums != null.

Testing:
You have been provided with a file containing 2 JUNIT test cases, and a testing
script. You must ensure that your code runs with these test cases and script on
the ECE Linux 64-bit machines, such as Kamek. Instructions for running the
script are provided separately.

More Instructions:
 You must use good style, including indentation, variable and method

names, spacing, and comments.
 You must complete the header.
 You must not delete or modify the package statement from the template

o .java file.
 You must make sure that the test cases you are given pass with your

code, using JUNIT testing.
 You must ensure that your program compiles and runs on

kamek.ece.utexas.edu.
 Check out all files to a clean directory, and compile and run it on the

Linux command line and/or in Eclipse/other IDE.
 When you are done, turn in only your SortTools.java file to Canvas (you

don’t need to turn in any other files).

