Sound in Java

Multimedia Systems (Module 1 Lesson 4)

Summary:
0 Sound API Basics
0 Playing Audio
o In Memory (bounded)

O Streamed (unbounded)

O Recording Sound
O MIDI

Sources:
O Chapter 18 of this book:

Beginning Java2 - JDK 1.3
Version by Ivor Horton

O Link to examples is available

on the class website

Java Sound Preliminaries

File Formats Supported
O .auor.snd :usually

stores 8-bit p-law encoded
samples, but can also store

8 or 16 bit linear samples

O .aif :usually stores 8 or
16 bit linear encoded
samples

O .wav :Can store 8 or 16 bit
samples using linear or p-law

encoded samples
O .midi :follows the midi
data format

Note: The file header

indicates the actual format

Frames and Frame Rates
O Sample Frame

O Stores all the samples taken
at an instant of time

O # of bytes in a frame = # of
bytes in a sample X number of
channels

O Frame Rate

O The number of frames per
second of sound

O In most cases frame rate is
same as sample rate

O In compressed sound, the
frame rate will be less than
sample rate.

Simple Sound Output

PlayIt.java
inport java.applet.*;
inport javax.swing.*;
inport java awt.event.*;

public class Playlt extends JAppl et
{
AudioQip clip;
JButton button;
final String play = "PLAY";
final String stop = "STCOP";

/1 The sound clip

public void init()
{
/1 Gt the sound clip
String fileNane = getParaneter("clip");
/1 Get the file name
clip =

get Audi o0 i p(get Docunent Base(), fi | eNane) ;

Il Geate the clip

Il Rest of the applet initialization...
button = new JButton(pl ay);

but t on. addAct i onLi st ener (new Acti onLi st ener ()

{

public void actionPerformed(ActionEvent e)
{
if(e. get Acti onCommand(). equal s(pl ay))
{
clip.loop();
but t on. set Text (st op) ;
}
el se
{
clip.stop();
but ton. set Text (pl ay) ;
}
}
}
)i

get Cont ent Pane() . add(but t on) ;

}

Playit.html

<APPLET OCDE =*Pl aylt.class” OCDEBASE = “."

“nydip.vav’ >
</ APPLET>

WDTH = 300 Height = 50 clip =

Sound in Applications

Similar to an Applet

O The Appl et class defines a static method,
newAudi od i p() that retrieves an audio clip from a
URL and returns a reference type Audi od i p that

encapsulates the audio clip.

O This method being st at i ¢, you don't have to have an
appl et object to call it. It can be called from an

application as well, like so:

Audiodip clip = Appl et. newAudi od i p(URL

| ocati on)

O Take a look at example Pl aySounds. j ava in the

examples directory

Java Sound APT

System Resources

O Audio Line: Any resource
that is a source or
destination of sampled
sound data

O A line can encapsulate
several channels

O Example: input/output
ports on the sound card

O Lines have controls (gain
and pan control)

O Mixer: Receives input
from one or more source
data lines and outputs the
result of combining the
input to an output line
called a target data line

Other Sound Sources

O A file or more generally a
URL

Terminology:

O A source data line is a source
for a mixer, not a source for
you; you write to it

0 A target data line is the
output from the mixer; your

read from it
Source Data Lines Target Data Lines
Sound i
ound o/p
Sound 7
Sound 77 Sound o/p

Java Sound APT (..contd)

Packages:
0 javax.
O javax.
0 javax.
O javax.

sound. sanpl ed
sound. ni di

sound. sanpl ed. spi
sound. sanpl ed. ni di

The Audi 0Syst emclass

O Establish whether a
particular resource is
available

O Get aref. fo the object
that encapsulates the
resource

O Call methods to operate
the resource

Audi ol nput St r eamclass
O Represents a stream that
is a source of sampled
sound data with a specific
format
O You can create an
Audi ol nput St reamobject
from a local sound file,
from another input stream
or a URL
O You can
O Read data from it
O Werite its confents to an
output stream
O Convert its format

Sampled Sound Interfaces

Resource Descriptor Classes

The Li ne, Dat aLi ne, M xer and Port interface definitions each
include an inner class with the name I nf 0. Objects of these
class types encapsulate data specifying an object of the
corresponding type

Why Descriptor Class?

In order to answer that question, we have to look at the steps
involved in playing audio:

Create an instance of a Line that specifies the format of
the sound data you wish to play (use descriptor class).
Get a reference to a line (a Dataline, Port, Mixer or Clip)
that supports this format

1. May check if supported before requesting reference
Create an Audio Stream that encapsulates the sound data
(file, URL, another stream)

1. Extract the format from the Audio Stream

Tie the source of the sound data to the reference (line)
that will play it. L.e., open the source

5. Play it; loop; goto; quit.

-

N

w

hal

Playing a Clip vs. Stream

Audi ol nput Stream source =
Audi oSyst em get Audi ol nput Strean(file);
/1 Step 3.

DataLine.Info cliplnfo = new
Dat aLine. I nfo(Clip.class,
source. get Format());

Il Step 1.

i f(Audi oSystem i sLineSupported(cliplnfo))
{
Clip newClip =
(Cip)Audi oSyst em get Li ne(cliplnfo);
1l Step 2.

newCl i p. open(source);// Step 4.
}

clip.
clip.
clip.
Clip.

I oop(clip. LOOP_CONTI NUOUSLY) ;
stop(); // stop

set FranePosi tion(0);

close();

11 1 oop

Audi ol nput St ream newSour ce =
Audi 0Syst em get Audi ol nput Strean(file);
Il Step 3.
Audi oFormat format = newSource. get For mat () ;
DataLine.Info sourcelnfo = new
Dat aLi ne. I nf o(Sour ceDat aLi ne. cl ass,
format); // Step 1.
i f (Audi oSystem i sLi neSupported(sourcelnfo))

srcLine =
(Sour ceDat aLi ne)Audl oSystem get Li ne(sou
rcelnfo); // Ste
bufferSize =
(|nt)(format get FrameSi ze()*format. getF
rameRate()/2.0f);
soundData = new byte[buf ferSize];
srcLine.open(format, bufferSize);
}
whi | e(pl ayi ng)
{

114,

byteCount = source.read(soundData, O,
soundData.l ength); // Read the stream
if(byteCount -1)

sourceLine.drain(); // rest of buffer
playing = fal se; break;

sour ceLine. wite(soundData, 0, byteCount);
Il Wite the array to the line

MIDI in JavaSound

o

Data is a MIDI file is a series
of commands that defines a
piece of music
Up to 16 MIDI channels are
available (each instrument
uses one channel)
A MIDI Synthesizer
reproduces(synthesizes)
sounds in response to MIDI
commands

O H/W part of the sound card

O S/W as in JavaSound
A sequencer is a device that
processes a MIDI sequence in
order to play it on a
synthesizer, or possible to
edit it.

O H/Wor s/W

A device conforming to the
General MIDI spec. must
provide:

A min. of 128 preset
instruments + 47 percussive
sounds

A min. of 16 simultaneous
timbres (instruments)

A min. of 24 simultaneous
voices, where each voice is a
note of given velocit
(loudness) for any of the
available instruments and
percussive sounds

16 midi channels, where each
channel is polyphonic(can play
multiple simultaneous voices).
Percussive sounds are always
on channel 10

MIDI Resources in JavaSound

Playing a MIDI file

To play a MIDI file, you don't need to access a synthesizer directly.

All you need is a Sequencer reference and an object
encapsulating the sequence that you want to play.

Steps:

1

sequencer = MidiSystem.getSequencer();

// Get a sequencer

sequencer.open();

sequence = MidiSystem.getSequence(midiFile)

// Encapsulate the midi src (file here; URL possible) in a sequence obj.
sequencer.setSequence(sequence);

// Hand the sequence over to the sequencer

sequencer.start();

// Play it. Stop it: sequencer.stop()

