
Sound in Java
Multimedia Systems (Module 1 Lesson 4)

Summary:
� Sound API Basics
� Playing Audio

� In Memory (bounded)
� Streamed (unbounded)

� Recording Sound
� MIDI

Sources:
� Chapter 18 of this book:

Beginning Java2 � JDK 1.3
Version by Ivor Horton

� Link to examples is available
on the class website

Java Sound Preliminaries
File Formats Supported
� .au or .snd : usually

stores 8-bit µ-law encoded
samples, but can also store
8 or 16 bit linear samples

� .aif : usually stores 8 or
16 bit linear encoded
samples

� .wav :Can store 8 or 16 bit
samples using linear or µ-law
encoded samples

� .midi : follows the midi
data format

Note: The file header
indicates the actual format

Frames and Frame Rates
� Sample Frame

� Stores all the samples taken
at an instant of time

� # of bytes in a frame = # of
bytes in a sample X number of
channels

� Frame Rate
� The number of frames per

second of sound
� In most cases frame rate is

same as sample rate
� In compressed sound, the

frame rate will be less than
sample rate.

Simple Sound Output
import java.applet.*;

import javax.swing.*;

import java.awt.event.*;

public class PlayIt extends JApplet

{

AudioClip clip; // The sound clip

JButton button;

final String play = "PLAY";

final String stop = "STOP";

public void init()

{

// Get the sound clip

String fileName = getParameter("clip");

// Get the file name

clip =

getAudioClip(getDocumentBase(),fileName);

// Create the clip

// Rest of the applet initialization...

button = new JButton(play);

button.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

if(e.getActionCommand().equals(play))

{

clip.loop();

button.setText(stop);

}

else

{

clip.stop();

button.setText(play);

}

}

}

);

getContentPane().add(button);

}

<APPLET CODE =“PlayIt.class” CODEBASE = “.” WIDTH = 300 Height = 50 clip =
“myClip.wav” >

</APPLET>

Playit.html

PlayIt.java

Sound in Applications
Similar to an Applet
� The Applet class defines a static method,

newAudioClip()that retrieves an audio clip from a
URL and returns a reference type AudioClip that
encapsulates the audio clip.
� This method being static, you don�t have to have an

applet object to call it. It can be called from an
application as well, like so:
AudioClip clip = Applet.newAudioClip(URL
location)

� Take a look at example PlaySounds.java in the
examples directory

Java Sound API
System Resources
� Audio Line: Any resource

that is a source or
destination of sampled
sound data
� A line can encapsulate

several channels
� Example: input/output

ports on the sound card
� Lines have controls (gain

and pan control)
� Mixer: Receives input

from one or more source
data lines and outputs the
result of combining the
input to an output line
called a target data line

Other Sound Sources
� A file or more generally a

URL

Terminology:
� A source data line is a source

for a mixer, not a source for
you; you write to it

� A target data line is the
output from the mixer; your
read from it

MIXER
Sound i/p

Sound i/p

Sound i/p

Sound o/p

Sound o/p

Target Data LinesSource Data Lines

Java Sound API (�contd)
Packages:
� javax.sound.sampled

� javax.sound.midi

� javax.sound.sampled.spi

� javax.sound.sampled.midi

The AudioSystem class
� Establish whether a

particular resource is
available

� Get a ref. to the object
that encapsulates the
resource

� Call methods to operate
the resource

AudioInputStream class
� Represents a stream that

is a source of sampled
sound data with a specific
format

� You can create an
AudioInputStream object
from a local sound file,
from another input stream
or a URL

� You can
� Read data from it
� Write its contents to an

output stream
� Convert its format

Sampled Sound Interfaces

TargetDataLine

Mixer DataLine Port

SourceDataLine

Line

Clip

Resource Descriptor Classes

Mixer.Info DataLine.Info Port.Info

Line.Info

The Line, DataLine, Mixer and Port interface definitions each
include an inner class with the name Info. Objects of these
class types encapsulate data specifying an object of the
corresponding type

Specifies a Line
object by its Class

Specifies a Mixer
object by its name,
vendor version and
description

Specifies a DataLine by
the audio formats to be
supported, the buffer
size limits, and the Class
of the data line

Specifies a Port object by
its Class, its name, and
whether it is a source or
target line

Why Descriptor Class?
In order to answer that question, we have to look at the steps

involved in playing audio:
1. Create an instance of a Line that specifies the format of

the sound data you wish to play (use descriptor class).
2. Get a reference to a line (a DataLine, Port, Mixer or Clip)

that supports this format
1. May check if supported before requesting reference

3. Create an Audio Stream that encapsulates the sound data
(file, URL, another stream)

1. Extract the format from the Audio Stream
4. Tie the source of the sound data to the reference (line)

that will play it. I.e., open the source
5. Play it; loop; goto; quit.

Playing a Clip vs. Stream
AudioInputStream source =

AudioSystem.getAudioInputStream(file);

// Step 3.

DataLine.Info clipInfo = new
DataLine.Info(Clip.class,
source.getFormat());

// Step 1.

if(AudioSystem.isLineSupported(clipInfo))

{

Clip newClip =
(Clip)AudioSystem.getLine(clipInfo);

// Step 2.

newClip.open(source);// Step 4.

}

clip.loop(clip.LOOP_CONTINUOUSLY); // loop

clip.stop(); // stop

clip.setFramePosition(0);

Clip.close();

AudioInputStream newSource =
AudioSystem.getAudioInputStream(file);

// Step 3.

AudioFormat format = newSource.getFormat();

DataLine.Info sourceInfo = new
DataLine.Info(SourceDataLine.class,
format); // Step 1.

if(AudioSystem.isLineSupported(sourceInfo))
{

srcLine =
(SourceDataLine)AudioSystem.getLine(sou
rceInfo); // Step 2.

bufferSize =
(int)(format.getFrameSize()*format.getF
rameRate()/2.0f);

soundData = new byte[bufferSize];
srcLine.open(format, bufferSize); //4.

}

while(playing)

{
byteCount = source.read(soundData, 0,
soundData.length); // Read the stream

if(byteCount == -1)
{

sourceLine.drain(); // rest of buffer
playing = false; break;

}

sourceLine.write(soundData,0, byteCount);

// Write the array to the line
}

MIDI in JavaSound
� Data is a MIDI file is a series

of commands that defines a
piece of music

� Up to 16 MIDI channels are
available (each instrument
uses one channel)

� A MIDI Synthesizer
reproduces(synthesizes)
sounds in response to MIDI
commands
� H/W part of the sound card
� S/W as in JavaSound

� A sequencer is a device that
processes a MIDI sequence in
order to play it on a
synthesizer, or possible to
edit it.
� H/W or S/W

A device conforming to the
General MIDI spec. must
provide:

� A min. of 128 preset
instruments + 47 percussive
sounds

� A min. of 16 simultaneous
timbres (instruments)

� A min. of 24 simultaneous
voices, where each voice is a
note of given velocity
(loudness) for any of the
available instruments and
percussive sounds

� 16 midi channels, where each
channel is polyphonic(can play
multiple simultaneous voices).
Percussive sounds are always
on channel 10

MIDI Resources in JavaSound

Sequencer Synthesizer

MidiDevice

Declares basic operations for a MIDI
device. Inner class, MidDevice.Info can be
used for specifying a device

A sequencer object can
play a sequence, which
you can construct from
a MIDI file

A synthesizer object
encapsumates a h/w or
s/w MIDI synthesizer

Declares operations
specific to a synthesizer

Declares operations specific to a sequencer.
Innerclass Sequencer.SyncMode used for
synchronizing with another device

Playing a MIDI file
To play a MIDI file, you don�t need to access a synthesizer directly.

All you need is a Sequencer reference and an object
encapsulating the sequence that you want to play.

Steps:
1. sequencer = MidiSystem.getSequencer();

// Get a sequencer
2. sequencer.open();
3. sequence = MidiSystem.getSequence(midiFile)

// Encapsulate the midi src (file here; URL possible) in a sequence obj.
4. sequencer.setSequence(sequence);

// Hand the sequence over to the sequencer
5. sequencer.start();

// Play it. Stop it: sequencer.stop()

