
Lossless Compression
Multimedia Systems (Module 2)

� Lesson 1: 
� Minimum Redundancy Coding based on Information 

Theory: 
• Shannon-Fano Coding
• Huffman Coding

� Lesson 2:
� Adaptive Coding based on Statistical Modeling: 

• Adaptive Huffman
• Arithmetic coding

� Lesson 3:
� Dictionary-based Coding

• LZW

 

Lossless Compression
Multimedia Systems (Module 2 Lesson 1)

Summary:

� Compression
� With loss
� Without loss

� Shannon: Information 
Theory

� Shannon-Fano Coding 
Algorithm

� Huffman Coding Algorithm

Sources:
� The Data Compression Book,

2nd Ed., Mark Nelson and 
Jean-Loup Gailly. 

� Dr. Ze-Nian Li’s course 
material 

 

Compression
Why Compression?

All media, be it text, audio, graphics or video has “redundancy”.
Compression attempts to eliminate this redundancy.

What is Redundancy?
� If one representation of a media content, M, takes X bytes and 

another takes Y bytes(Y< X), then X is a redundant 
representation relative to Y.

� Other forms of Redundancy
If the representation of a media captures content that is not 
perceivable by humans, then removing such content will not 
affect the quality of the content.

• For example, capturing audio frequencies outside the human hearing 
range can be avoided without any harm to the audio’s quality.

Is there a representation with an optimal size Z that cannot be
improved upon?

This question is tackled by information theory.

 



Compression
Lossless Compression Compression with loss

M

m

Lossless Compress

M

Uncompress

M

m

Compress with loss

M’

Uncompress

M’ ≈ M

 

Information Theory

According to Shannon, the entropy@ of an information 
source S is defined as: 

H(S) = Σi (pi log 2 (1/pi )) 
� log 2 (1/pi ) indicates the amount of information contained in

symbol Si, i.e., the number of bits needed to code symbol Si. 
� For example, in an image with uniform distribution of gray-

level intensity, i.e. pi = 1/256, with the number of bits 
needed to code each gray level being 8 bits. The entropy of 
the image is 8. 

� Q: What is the entropy of a source with M symbols where 
each symbol is equally likely?

• Entropy, H(S) = log2 M
� Q: How about an image in which half of the pixels are white 

and half are black?
• Entropy, H(S) = 1

@Here is an excellent primer by Dr. Schnieder on this subject

 

Information Theory
Discussion:

� Entropy is a measure of how much information is encoded in 
a message. Higher the entropy, higher the information 
content.

• We could also say entropy is a measure of uncertainty in a 
message. Information and Uncertainty are equivalent concepts.

� The units (in coding theory) of entropy are bits per symbol.
• It is determined by the base of the logarithm: 

2: binary (bit);
10: decimal (digit).

� Entropy gives the actual number of bits of information 
contained in a message source.

• Example: If the probability of the character ‘e’ appearing in 
this slide is 1/16, then the information content of this 
character is 4 bits. So, the character string “eeeee” has a total 
content of 20 bits (contrast this to using an 8-bit ASCII 
coding that could result in 40 bits to represent “eeeee”).

 



Data Compression = Modeling + Coding
Data Compression consists of taking a stream of symbols and 

transforming them into codes.
� The model is a collection of data and rules used to process input 

symbols and determine their probabilities.
� A coder uses a model (probabilities) to spit out codes when its 

given input symbols

Let’s take Huffman coding to demonstrate the distinction:

Input
Stream Model Encoder Output

Stream
Symbols Probabilities Codes

� The output of the Huffman encoder is determined by the Model 
(probabilities). Higher the probability shorter the code.
� Model A could determine raw probabilities of each symbol 

occurring anywhere in the input stream. (pi = # of occurrences of Si / 
Total number of Symbols)

� Model B could determine prob. based on the last 10 symbols in the 
i/p stream. (continuously re-computes the probabilities)

 

The Shannon-Fano Encoding Algorithm
1. Calculate the frequencies

of the list of symbols
(organize as a list).

2. Sort the list in
(decreasing) order of
frequencies.

3. Divide list into two
halfs, with the total
freq. Counts of each half
being as close as
possible to the other.

4. The upper half is
assigned a code of 0 and
lower a code of 1.

5. Recursively apply steps 3
and 4 to each of the
halves, until each symbol
has become a
corresponding code leaf
on a tree.

Symbol

Count

BA DC E

715 6 6 5
0 0 1 1 1
0 1 0 11

10

Example

151112.965E

181102.706D

12102.706C

14012.487B

30001.3815A

Subtotal
# of 
Bits

CodeInfo.
-log2(pi)

CountSymbol

It takes a total of 89 bits to encode 
85.25 bits of information (Pretty 
good huh!)

x

x

x

x

x

85.25 89

 

The Huffman Algorithm
1. Initialization: Put all

nodes in an OPEN list L,
keep it sorted at all
times (e.g., ABCDE).

2. Repeat the following
steps until the list L
has only one node left:

1. From L pick two nodes
having the lowest
frequencies, create a
parent node of them.

2. Assign the sum of the
children's frequencies
to the parent node and
insert it into L.

3. Assign code 0, 1 to
the two branches of
the tree, and delete
the children from L.

Symbol BA DC E
Count 715 6 6 5

Example

150112.965E

180102.706D

180012.706C

210002.487B

1511.3815A

Subtotal
# of 
Bits

CodeInfo.
-log2(pi)

CountSymbol

x

x

x

x

x

85.25 87

0 1
24

0 1
13

0 1
11

39
01

 



Huffman Alg.: Discussion
Decoding for the above two algorithms is trivial as long as the 

coding table (the statistics) is sent before the data. There 
is an overhead for sending this, negligible if the data file is 
big. 

Unique Prefix Property: no code is a prefix to any other code 
(all symbols are at the leaf nodes)
--> great for decoder, unambiguous; unique Decipherability?

If prior statistics are available and accurate, then Huffman 
coding is very good. 

Number of bits (per symbol) needed for Huffman Coding is: 
87 / 39 = 2.23

Number of bits (per symbol)needed for Shannon-Fano 
Coding is: 

89 / 39 = 2.28

 
 


