
Lossless Compression
Multim edia System s (Module 2 Lesson 3)

Summary:

� Dictionary based
Compression

� Adaptive M echanism
� Limpel Z iv W elch (LZW)

mechanism

Sources:
� The Data Compression Book, 2 nd

Ed., M ark N elson and Jean-Loup
Gailly .

� LZW Com pression Article
from Dr. Dobbs Journal:
Im plem enting LZW
com pression using Java, by
Laurence Vanhelsuwé

Dictionary-Based Compression
� The compression algorithms we studied so far use a

statistical model to encode single symbols
� Compression: Encode symbols into bit strings that use fewer

bits.
� Dictionary-based algorithms do not encode single symbols

as variable-length bit strings; they encode variable-length
strings of symbols as single tokens
� The tokens form an index into a phrase dictionary
� If the tokens are smaller than the phrases they replace,

compression occurs.
� Dictionary-based compression is easier to understand

because it uses a strategy that programmers are familiar
with-> using indexes into databases to retrieve
information from large amounts of storage.
� Telephone numbers
� Postal codes

Dictionary-Based Compression: Example
� Consider the Random House Dictionary of the English

Language, Second edition, Unabridged. Using this
dictionary, the string:

A good example of how dictionary based compression works
can be coded as:

1/1 822/3 674/4 1343/60 928/75 550/32 173/46 421/2

� Coding:
� Uses the dictionary as a simple lookup table
� Each word is coded as x/y, where, x gives the page in the

dictionary and y gives the number of the word on that page.
� The dictionary has 2,200 pages with less than 256 entries per

page: Therefore x requires 12 bits and y requires 8 bits, i.e.,
20 bits per word (2.5 bytes per word).

� Using ASCII coding the above string requires 48 bytes,
whereas our encoding requires only 20 (<-2.5 * 8) bytes: 50%
compression.

Adaptive Dictionary-based Compression
� Build the dictionary adaptively

� Necessary when the source data is not plain text, say audio or
video data.

� Is better tailored to the specific source.
� Original methods due to Ziv and Lempel in 1977 (LZ77) and

1978 (LZ78). Terry Welch improved the scheme in 1984
(called LZW compression). It is used in, UNIX compress,
and, GIF.

� LZ77: A sliding window technique in which the dictionary
consists of a set of fixed length phrases found in a window
into the previously processed text

� LZ78: Instead of using fixed-length phrases from a
window into the text, it builds phrases up one symbol at a
time, adding a new symbol to an existing phrase when a
match occurs.

LZW Algorithm
Preliminaries:
� A dictionary that is indexed by �codes� is used.
� The dictionary is assumed to be initialized with 256

entries (indexed with ASCII codes 0 through 255)
representing the ASCII table.

� The compression algorithm assumes that the output is
either a file or a communication channel. The input being a
file or buffer.

� Conversely, the decompression algorithm assumes that
the input is a file or a communication channel and the
output is a file or a buffer.

DecompressionCompression

file/buffer Compressed file/
Communication channel

file/buffer

LZW Algorithm
LZW Compression:

set w = NIL
loop

read a character k
if wk exists in the dictionary

w = wk
else

output the code for w
add wk to the dictionary
w = k

endloop

The program reads one character at a time. If the code is in the
dictionary, then it adds the character to the current work string, and
waits for the next one. This occurs on the first character as well. If the
work string is not in the dictionary, (such as when the second character
comes across), it adds the work string to the dictionary and sends over
the wire (or writes to a file) the code assigned to the work string
without the new character. It then sets the work string to the new
character.

Example of LZW: Compression
Input String: ^WED^WE^WEE^WEB^WET

TEOFT

^WET266260T^WE

E^W

W^

B^265B^B

WEB264257BWE

EW

E^W263261WE^

^E

^WEE262260E^WE

E^W

W^

E^261E^E

^WE260256E^W

W^

D^259D^D

ED258EDE

WE257WEW

^W256^W^

^NIL

SymbolIndexOutputkw set w = NIL
loop

read a character k
if wk exists in the dictionary

w = wk
else

output the code for w
add wk to the dictionary
w = k

endloop

LZW Algorithm
LZW Decompression:

read fixed length token k (code or char)
output k
w = k
loop

read a fixed length token k
entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

The nice thing is that the decom pressor builds its own d ictionary on its
side, that matches exactly the com pressor's, so that only the codes need
to be sent.

Example of LZW
Input String (to decode): ^WED<256>E<260><261><257>B<260>T

^WET266TT^WE

B^265^WE<260>B

WEB264BBWE

E^W263WE<257>E^

^WEE262E^<261>^WE

E^261^WE<260>E

^WE260EE^W

D^259^W<256>D

ED258DDE

WE257EEW

^W256WW^

^^

SymbolIndexOutputkw read a fixed length token k
(code or char)

output k
w = k
loop

read a fixed length token k
(code or char)

entry = dictionary entry for k
output entry
add w + first char of entry to

the dictionary
w = entry

endloop

LZW Algorithm - Discussion

9 bits

0

9 bits

1

<- ASCII characters

(0 to 255)

<- Codes

(256 to 512)

� W here is the compression?
� Original String to decode : ^W ED^W E^W EE^W EB^W ET
� Decoded String : ^W ED<256>E<260><261><257>B<260>T
� Plain ASCII coding of the string : 19 * 8 bits = 152 bits
� LZW coding of the string: 12*9 bits = 108 bits (7 symbols and 5

codes, each of 9 bits)
� W hy 9 bits?

� An ASCII character has a value ranging from 0 to 255
� All tokens have fixed length
� There has to be a distinction in representation between an

ASCII character and a Code (assigned to strings of length 2 or
more)

� Codes can only have values 256 and above

LZW Algorithm � Discussion (continued)
� With 9 bits we can only have a maximum of 256 codes for

strings of length 2 or above (with the first 256 entries for
ASCII characters)

� Original LZW uses dictionary with 4K entries, with the
length of each symbol/code being 12 bits

12 bits

0 <- ASCII characters

(0 to 255 entries)

<- Codes

(256 to 4096 entries)

00 0

100 0

111 1

� With 12 bits, we can have a maximum of 212 � 256 codes.

� Practical implementations of LZW algorithm follow the two

approaches:
� Flush the dictionary periodically

� no wasted codes
� Grow the length of the codes as the algorithm proceeds

- First start with a length of 9 bits for the codes.
- Once we run out of codes, increase the length to 10 bits. When we

run out of codes with 10 bits then we increase the code length to 11
bits and so on.

- more efficient.

Codes 256-5121

ASCII0

Codes 512-76701

Codes 256-51110

1

0

Codes 768-10231

ASCII0

1

1

1

1

0

0

0

0

Codes 512-76701

Codes 768-102311

Codes 1024-127900

Codes 1280-153510

Codes 1536-179101

Codes 256-51110

1

0

Codes 1792-20471

ASCII0Out of codes

Out of codes

