
Java Media Framework
Multim edia Systems: Module 3 Lesson 1

Summary:
� JMF Core Model

� Architecture
� Models: time, event, data

� JMF Core Functionality
� Presentation
� Processing
� Capture
� Storage and

Transmission
� JMF Extensibility

Sources:
� JMF 2.0 API Programmers

Guide from Sun:
http://java.sun.com/products/java-media/jmf/2.1/guide/

� JMF 2.0 API
� JMF W hite Paper from IBM

http://www-
4.ibm .com/softw are/developer/library/jmf/jmfw hite.
html

High Level Architecture

JMF Applications, Applets, Beans

JMF Presentation and Processing API

JMF Plug-In API

Muxes &
Demuxes Codecs Effects Renderers

� A demultiplexer extracts
individual tracks of media data
from a multiplexed media stream.
A mutliplexer performs the
opposite function, it takes
individual tracks of media data
and merges them into a single
multiplexed media stream.

� A codec performs media-data
compression and decompression.
Each codec has certain input
formats that it can handle and
certain output formats that it can
generate

� An effect filter modifies the
track data in some way, often to
create special effects such as
blur or echo

� A renderer is an abstraction of a
presentation device. For audio, the
presentation device is typically the
computer's hardware audio card
that outputs sound to the speakers.
For video, the presentation device is
typically the computer monitor.

Framework

JMF
� Media Streams

� A media stream is the media data obtained from a local file,
acquired over the network, or captured from a camera or
microphone. Media streams often contain multiple channels of
data called tracks. For example, a Quicktime file might contain
both an audio track and a video track.

� A track's type identifies the kind of data it contains, such as
audio or video. The format of a track defines how the data for
the track is structured.

� Formats: (V) Cinepak, H.261, MPEG-1, MPEG-2, Indeo; (A): µ-Law,
PCM, ADPCM, MPEG-1, MPEG-3, G.723.1, GSM

� Media streams can be categorized according to how the data is
delivered:

� Pull--data transfer is initiated and controlled from the client side.
E.g., HTTP and FILE are pull protocols.

� Push--the server initiates data transfer and controls the flow of
data. E.g., Real-time Transport Protocol (RTP) is a push protocol
used for streaming media. Similarly, the SGI MediaBase protocol is
a push protocol used for video-on-demand (VOD).

JMF Time Model

� The Clock interface is implemented by objects that support the
Java Media time model. E.g., this interface might be implemented
by an object that decodes and renders MPEG movies.

� A Clock uses a TimeBase to keep track of the passage of time
while a media stream is being presented. A TimeBase provides a
constantly ticking time source.

syncStart
Clock

stop
getMediaTime
setMediaTime
getRate
setRate
getStopTime
setStopTime
getTimeBase
setTimeBase

TimeBase
getTime
getNanoseconds

Time
Time(long nanosecs)
Time(double secs)
getNanoseconds
getSeconds
SecondsToNanoseconds

Duration
getDuration

has a

. . .

Time Model

� A Clock object's media time represents the current position within
a media stream--the beginning of the stream is media time zero,
the end of the stream is the maximum media time for the stream.
The duration of the media stream is the length of time that it
takes to present the media stream.

� To keep track of the current media time, a Clock uses:
� The time-base start-time -- the time that its TimeBase reports when

the presentation begins.
� The media start-time -- the position in the media stream where

presentation begins.
� The playback rate --how fast the Clock is running in relation to its

TimeBase. The rate is a scale factor that is applied to the TimeBase.
� When presentation begins, the media time is mapped to the time-

base time and the advancement of the time-base time is used to
measure the passage of time. During presentation, the current
media time is calculated using the following formula:
MediaTime = MediaStartTime + Rate(TimeBaseTime - TimeBaseStartTime)

Managers
� JMF uses four managers:

� Manager--handles the construction of Players, Processors,
DataSources, and DataSinks. This level of indirection allows new
implementations to be integrated seamlessly with JMF. From the client
perspective, these objects are always created the same way whether
the requested object is constructed from a default implementation or a
custom one.

� PackageManager--maintains a registry of packages that contain JMF
classes, such as custom Players, Processors, DataSources, and
DataSinks.

� CaptureDeviceManager--maintains a registry of available capture
devices.

� PlugInManager--maintains a registry of available JMF plug-in
processing components, such as Multiplexers, Demultiplexers, Codecs,
Effects, and Renderers.

� To write programs based on JMF, you will use the Manager create methods to construct the Players,
Processors, DataSources, and DataSinks for your application.

� If you're capturing media data from an input device, you'll use the CaptureDeviceManager to find out
what devices are available and access information about them.

� If you're interested in controlling what processing is performed on the data, you might also query
the PlugInManager to determine what plug-ins have been registered.

Event Model
� Whenever a JMF object needs to report on the current

conditions, it posts a MediaEvent. MediaEvent is sub-
classed to identify many particular types of events.

� For each type of JMF object that can post MediaEvents,
JMF defines a corresponding listener interface. To receive
notification when a MediaEvent is posted, you implement
the appropriate listener interface and register your listener
class with the object that posts the event by calling its
addListener method.

� Controller objects (such as Players and Processors) and
certain Control objects such as GainControl post media
events.

Data Model
� JMF media players usually use DataSources to manage the

transfer of media-content. A DataSource encapsulates both the
location of media and the protocol and software used to deliver the
media. Once obtained, the source cannot be reused to deliver other
media.

� A DataSource is identified by either a JMF MediaLocator or a
URL (universal resource locator). A MediaLocator is similar to a
URL and can be constructed from a URL, but can be constructed
even if the corresponding protocol handler is not installed on the
system. (Note: In Java, a URL can only be constructed if the
corresponding protocol handler is installed on the system.)
� A standard data source uses a byte array as the unit of transfer. A

buffer data source uses a Buffer object as its unit of transfer.
� JMF data sources can be categorized according to how data

transfer is initiated:
� Pull Data-Source--the client initiates the data transfer and controls

the flow of data from pull data-sources.
� Push Data-Source--the server initiates the data transfer and controls

the flow of data from a push data-source. Push data-sources include
broadcast media, multicast media, and video-on-demand (VOD).

JMF: Main Functionality
� Presentation

� Take media content from a DataSource and render it.
� This functionality is contained in the Controller interface

• Player extends this interface
� Processing

� Take media content from a DataSource, perform some user-
defined processing on it, and output it

� This functionality is contained in the Processor interface
• Processor extends the Player interface

� Capture
� A capturing device can act as a source for multimedia data.
� Capture devices are abstracted as DataSources.

� Media Storage and Transmission
� A DataSink reads media data from a DataSource and renders

it to some destination (generally a destination other than a
presentation device).

� E.g., A DataSinkmight write data to a file, write data across
the network, or function as an RTP broadcaster.

Player
� A Player processes an input stream of media data and

renders it at a precise time. A DataSource is used to
deliver the input media-stream to the Player.The rendering
destination depends on the type of media being presented.

DataSource Player

Processor
� A Processor is a Player that takes a DataSource as input,

performs some user-defined processing on the media data,
and then outputs the processed media data.

DataSource Processor DataSource

Pre A->B Post

Pre A->B Post

Codec
Plugin

Post-Proc.
Plugin

Pre-Proc.
Plugin

Track1

Track2
Demux
Plugin

Mux
Plugin

Renderer
Plugin

Renderer
Plugin

JMF:Extensibility
One can extend JMF by implementing custom plug-ins, media

handlers, and data sources.
� By implementing one of the JMF plug-in interfaces, one can

directly access and manipulate the media data associated
with a Processor:
� Implementing the Demultiplexer interface enables you to

control how individual tracks are extracted from a multiplexed
media stream.

� Implementing the Codec interface enables you to perform the
processing required to decode compressed media data, convert
media data from one format to another, and encode raw media
data into a compressed format.

� Implementing the Effect interface enables you to perform
custom processing on the media data.

� Implementing the Multiplexer interface enables you to
specify how individual tracks are combined to form a single
interleaved output stream for a Processor.

� Implementing the Renderer interface enables you to control
how data is processed and rendered to an output device.

JMF:Extensibility
� Implementing MediaHandlers and DataSources

� If the JMF Plug-In API doesn't provide the degree of
flexibility that you need, you can directly implement several
of the key JMF interfaces: Controller, Player,
Processor, DataSource, and DataSink.
� For example, you might want to implement a high-performance

Player that is optimized to present a single media format or a
Controller that manages a completely different type of time-
based media.

� The Manager mechanism used to construct Player,
Processor, DataSource, and DataSink objects enables
custom implementations of these JMF interfaces to be used
seamlessly with JMF.
� When one of the create methods is called, the Manager uses a

well-defined mechanism to locate and construct the requested
object.

� Your custom class can be selected and constructed through this
mechanism once you register a unique package prefix with the
PackageManager and put your class in the appropriate place in
the predefined package hierarchy.

